Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects

Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular neurobiology 2018-04, Vol.38 (3), p.605-614
Hauptverfasser: Gao, Yonghui, Wang, Jianhua, Shangguan, Shaofang, Bao, Yihua, Lu, Xiaoli, Zou, Jizhen, Dai, Yaohua, Liu, Junling, Zhang, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 3
container_start_page 605
container_title Cellular and molecular neurobiology
container_volume 38
creator Gao, Yonghui
Wang, Jianhua
Shangguan, Shaofang
Bao, Yihua
Lu, Xiaoli
Zou, Jizhen
Dai, Yaohua
Liu, Junling
Zhang, Ting
description Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.
doi_str_mv 10.1007/s10571-017-0506-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1910799075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010095439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4706295288695b8d29db89d892c1f8f566b2fb62d21db2f1bdd57c94cce8683d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOl4ewI0E3LipnqRNkyxlxht4R92GtDmVyrQdk0bw7Y2MFxBcncD5_j_JR8gug0MGII8CAyFZBkxmIKDMYIVMmJB5VqocVskEuORZkRewQTZDeAEADSDWyQZXJc8Lribk8S7afmxHO7ZvSK_Qhuixw36kQ0Nvj-9nOZ0Oi3d6HbsKPX2yvk3o0Afa9vQ8dran1xi9ndOHWCGdYYP1GLbJWmPnAXe-5hZ5PD15mJ5nlzdnF9Pjy6zOJR-zQkLJteBKlVpUynHtKqWd0rxmjWpEWVa8qUruOHPpxCrnhKx1Udeo0hddvkUOlr0LP7xGDKPp2lDjfG57HGIwTDOQWoMUCd3_g74M0ffpdYZDsqlFketEsSVV-yEEj41Z-Laz_t0wMJ_OzdK5Sc7Np3MDKbP31RyrDt1P4ltyAvgSCGnVP6P_vfr_1g8Ef4om</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010095439</pqid></control><display><type>article</type><title>Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Yonghui ; Wang, Jianhua ; Shangguan, Shaofang ; Bao, Yihua ; Lu, Xiaoli ; Zou, Jizhen ; Dai, Yaohua ; Liu, Junling ; Zhang, Ting</creator><creatorcontrib>Gao, Yonghui ; Wang, Jianhua ; Shangguan, Shaofang ; Bao, Yihua ; Lu, Xiaoli ; Zou, Jizhen ; Dai, Yaohua ; Liu, Junling ; Zhang, Ting</creatorcontrib><description>Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.</description><identifier>ISSN: 0272-4340</identifier><identifier>ISSN: 1573-6830</identifier><identifier>EISSN: 1573-6830</identifier><identifier>DOI: 10.1007/s10571-017-0506-0</identifier><identifier>PMID: 28623428</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptor Proteins, Signal Transducing ; Adult ; Anencephaly ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Copy number ; Desorption ; DNA Copy Number Variations - genetics ; Etiology ; Exons ; Female ; Genetic Predisposition to Disease - genetics ; Humans ; Ions ; Lasers ; Male ; Mass spectroscopy ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Middle Aged ; Neural tube defects ; Neural Tube Defects - genetics ; Neurobiology ; Neurosciences ; Original Research ; Polarity ; Real-Time Polymerase Chain Reaction - methods</subject><ispartof>Cellular and molecular neurobiology, 2018-04, Vol.38 (3), p.605-614</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4706295288695b8d29db89d892c1f8f566b2fb62d21db2f1bdd57c94cce8683d3</citedby><cites>FETCH-LOGICAL-c372t-4706295288695b8d29db89d892c1f8f566b2fb62d21db2f1bdd57c94cce8683d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10571-017-0506-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10571-017-0506-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28623428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yonghui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Shangguan, Shaofang</creatorcontrib><creatorcontrib>Bao, Yihua</creatorcontrib><creatorcontrib>Lu, Xiaoli</creatorcontrib><creatorcontrib>Zou, Jizhen</creatorcontrib><creatorcontrib>Dai, Yaohua</creatorcontrib><creatorcontrib>Liu, Junling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><title>Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects</title><title>Cellular and molecular neurobiology</title><addtitle>Cell Mol Neurobiol</addtitle><addtitle>Cell Mol Neurobiol</addtitle><description>Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Adult</subject><subject>Anencephaly</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Copy number</subject><subject>Desorption</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Etiology</subject><subject>Exons</subject><subject>Female</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Humans</subject><subject>Ions</subject><subject>Lasers</subject><subject>Male</subject><subject>Mass spectroscopy</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Middle Aged</subject><subject>Neural tube defects</subject><subject>Neural Tube Defects - genetics</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Polarity</subject><subject>Real-Time Polymerase Chain Reaction - methods</subject><issn>0272-4340</issn><issn>1573-6830</issn><issn>1573-6830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUhoMoOl4ewI0E3LipnqRNkyxlxht4R92GtDmVyrQdk0bw7Y2MFxBcncD5_j_JR8gug0MGII8CAyFZBkxmIKDMYIVMmJB5VqocVskEuORZkRewQTZDeAEADSDWyQZXJc8Lribk8S7afmxHO7ZvSK_Qhuixw36kQ0Nvj-9nOZ0Oi3d6HbsKPX2yvk3o0Afa9vQ8dran1xi9ndOHWCGdYYP1GLbJWmPnAXe-5hZ5PD15mJ5nlzdnF9Pjy6zOJR-zQkLJteBKlVpUynHtKqWd0rxmjWpEWVa8qUruOHPpxCrnhKx1Udeo0hddvkUOlr0LP7xGDKPp2lDjfG57HGIwTDOQWoMUCd3_g74M0ffpdYZDsqlFketEsSVV-yEEj41Z-Laz_t0wMJ_OzdK5Sc7Np3MDKbP31RyrDt1P4ltyAvgSCGnVP6P_vfr_1g8Ef4om</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Gao, Yonghui</creator><creator>Wang, Jianhua</creator><creator>Shangguan, Shaofang</creator><creator>Bao, Yihua</creator><creator>Lu, Xiaoli</creator><creator>Zou, Jizhen</creator><creator>Dai, Yaohua</creator><creator>Liu, Junling</creator><creator>Zhang, Ting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180401</creationdate><title>Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects</title><author>Gao, Yonghui ; Wang, Jianhua ; Shangguan, Shaofang ; Bao, Yihua ; Lu, Xiaoli ; Zou, Jizhen ; Dai, Yaohua ; Liu, Junling ; Zhang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4706295288695b8d29db89d892c1f8f566b2fb62d21db2f1bdd57c94cce8683d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Adult</topic><topic>Anencephaly</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Copy number</topic><topic>Desorption</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Etiology</topic><topic>Exons</topic><topic>Female</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Humans</topic><topic>Ions</topic><topic>Lasers</topic><topic>Male</topic><topic>Mass spectroscopy</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Middle Aged</topic><topic>Neural tube defects</topic><topic>Neural Tube Defects - genetics</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Polarity</topic><topic>Real-Time Polymerase Chain Reaction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yonghui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Shangguan, Shaofang</creatorcontrib><creatorcontrib>Bao, Yihua</creatorcontrib><creatorcontrib>Lu, Xiaoli</creatorcontrib><creatorcontrib>Zou, Jizhen</creatorcontrib><creatorcontrib>Dai, Yaohua</creatorcontrib><creatorcontrib>Liu, Junling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular and molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yonghui</au><au>Wang, Jianhua</au><au>Shangguan, Shaofang</au><au>Bao, Yihua</au><au>Lu, Xiaoli</au><au>Zou, Jizhen</au><au>Dai, Yaohua</au><au>Liu, Junling</au><au>Zhang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects</atitle><jtitle>Cellular and molecular neurobiology</jtitle><stitle>Cell Mol Neurobiol</stitle><addtitle>Cell Mol Neurobiol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>38</volume><issue>3</issue><spage>605</spage><epage>614</epage><pages>605-614</pages><issn>0272-4340</issn><issn>1573-6830</issn><eissn>1573-6830</eissn><abstract>Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28623428</pmid><doi>10.1007/s10571-017-0506-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4340
ispartof Cellular and molecular neurobiology, 2018-04, Vol.38 (3), p.605-614
issn 0272-4340
1573-6830
1573-6830
language eng
recordid cdi_proquest_miscellaneous_1910799075
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adaptor Proteins, Signal Transducing
Adult
Anencephaly
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Copy number
Desorption
DNA Copy Number Variations - genetics
Etiology
Exons
Female
Genetic Predisposition to Disease - genetics
Humans
Ions
Lasers
Male
Mass spectroscopy
Membrane Proteins - genetics
Membrane Proteins - metabolism
Middle Aged
Neural tube defects
Neural Tube Defects - genetics
Neurobiology
Neurosciences
Original Research
Polarity
Real-Time Polymerase Chain Reaction - methods
title Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Measurement%20of%20PARD3%20Copy%20Number%20Variations%20in%20Human%20Neural%20Tube%20Defects&rft.jtitle=Cellular%20and%20molecular%20neurobiology&rft.au=Gao,%20Yonghui&rft.date=2018-04-01&rft.volume=38&rft.issue=3&rft.spage=605&rft.epage=614&rft.pages=605-614&rft.issn=0272-4340&rft.eissn=1573-6830&rft_id=info:doi/10.1007/s10571-017-0506-0&rft_dat=%3Cproquest_cross%3E2010095439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010095439&rft_id=info:pmid/28623428&rfr_iscdi=true