Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)

Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2017-10, Vol.26 (5), p.564-573
Hauptverfasser: Xia, X.‐F., Li, Y., Yu, X.‐Q., Lin, J.‐H., Li, S.‐Y., Li, Q., You, M.‐S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 5
container_start_page 564
container_title Insect molecular biology
container_volume 26
creator Xia, X.‐F.
Li, Y.
Yu, X.‐Q.
Lin, J.‐H.
Li, S.‐Y.
Li, Q.
You, M.‐S.
description Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.
doi_str_mv 10.1111/imb.12319
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1910798275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934950136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRuDk9-A8YEi9bYjcopStHXfyxZEYPem4oBcekoKWN7r-X2unBxHd5L_DJN-99ADjFaIpDzXRVTHFMMNsDQ0xSGsU0I_tgiFgaRxjN6QAceb9BCGUsZYdgEGdpjBPChkAujLPavkBuS6haKxrtLDdQl9I2WmnBuwfoFKxcrYW2HqraVbBZS1hqXjlbFly8ht9mfQEfTdtIYzj83Brn-3G8mk6OwYHixsuTXR-B55vrp8VdtHq4XS4uV5EglLAoxXMkRapKRLBQWaK4UALJRKSIJ0iRosgSSgSjUkmuMkSJTAqcFJLFSOBSkREY97lvtXtvpW_ySnvRrWGla32OWbDBsnhOA3r-B924tg6ndxRJGEXBZKAmPSVq530tVf5W64rX2xyjvHOfB_f5t_vAnu0S26KS5S_5IzsAsx740EZu_0_Kl_dXfeQXgJeOAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934950136</pqid></control><display><type>article</type><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</creator><creatorcontrib>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</creatorcontrib><description>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/imb.12319</identifier><identifier>PMID: 28621439</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>AMPs ; Animals ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Antimicrobial Cationic Peptides - genetics ; Antimicrobial Cationic Peptides - isolation &amp; purification ; Antimicrobial Cationic Peptides - pharmacology ; Antimicrobial peptides ; Bacteria ; Butterflies &amp; moths ; Cell Membrane - drug effects ; Circular Dichroism ; Cloning ; Conformation ; Dichroism ; E coli ; Electron microscopy ; Escherichia coli - drug effects ; Immune response ; Innate immunity ; Insect Proteins - genetics ; Insect Proteins - isolation &amp; purification ; Insect Proteins - metabolism ; Insects ; lepidopteran ; Microbial Sensitivity Tests ; moricin ; Moths - genetics ; Moths - immunology ; Moths - metabolism ; Peptides ; Pests ; Plutella xylostella ; Protein structure ; Protein Structure, Secondary ; Scanning electron microscopy ; Scanning microscopy ; Secondary structure ; Sequence Analysis, DNA ; Staphylococcus aureus - drug effects ; Structural analysis ; Vegetables</subject><ispartof>Insect molecular biology, 2017-10, Vol.26 (5), p.564-573</ispartof><rights>2017 The Royal Entomological Society</rights><rights>2017 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</citedby><cites>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fimb.12319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fimb.12319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28621439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, X.‐F.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Yu, X.‐Q.</creatorcontrib><creatorcontrib>Lin, J.‐H.</creatorcontrib><creatorcontrib>Li, S.‐Y.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>You, M.‐S.</creatorcontrib><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</description><subject>AMPs</subject><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial Cationic Peptides - genetics</subject><subject>Antimicrobial Cationic Peptides - isolation &amp; purification</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Butterflies &amp; moths</subject><subject>Cell Membrane - drug effects</subject><subject>Circular Dichroism</subject><subject>Cloning</subject><subject>Conformation</subject><subject>Dichroism</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Escherichia coli - drug effects</subject><subject>Immune response</subject><subject>Innate immunity</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - isolation &amp; purification</subject><subject>Insect Proteins - metabolism</subject><subject>Insects</subject><subject>lepidopteran</subject><subject>Microbial Sensitivity Tests</subject><subject>moricin</subject><subject>Moths - genetics</subject><subject>Moths - immunology</subject><subject>Moths - metabolism</subject><subject>Peptides</subject><subject>Pests</subject><subject>Plutella xylostella</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Scanning electron microscopy</subject><subject>Scanning microscopy</subject><subject>Secondary structure</subject><subject>Sequence Analysis, DNA</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Structural analysis</subject><subject>Vegetables</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9PwyAUx4nRuDk9-A8YEi9bYjcopStHXfyxZEYPem4oBcekoKWN7r-X2unBxHd5L_DJN-99ADjFaIpDzXRVTHFMMNsDQ0xSGsU0I_tgiFgaRxjN6QAceb9BCGUsZYdgEGdpjBPChkAujLPavkBuS6haKxrtLDdQl9I2WmnBuwfoFKxcrYW2HqraVbBZS1hqXjlbFly8ht9mfQEfTdtIYzj83Brn-3G8mk6OwYHixsuTXR-B55vrp8VdtHq4XS4uV5EglLAoxXMkRapKRLBQWaK4UALJRKSIJ0iRosgSSgSjUkmuMkSJTAqcFJLFSOBSkREY97lvtXtvpW_ySnvRrWGla32OWbDBsnhOA3r-B924tg6ndxRJGEXBZKAmPSVq530tVf5W64rX2xyjvHOfB_f5t_vAnu0S26KS5S_5IzsAsx740EZu_0_Kl_dXfeQXgJeOAA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Xia, X.‐F.</creator><creator>Li, Y.</creator><creator>Yu, X.‐Q.</creator><creator>Lin, J.‐H.</creator><creator>Li, S.‐Y.</creator><creator>Li, Q.</creator><creator>You, M.‐S.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><author>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AMPs</topic><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial Cationic Peptides - genetics</topic><topic>Antimicrobial Cationic Peptides - isolation &amp; purification</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Butterflies &amp; moths</topic><topic>Cell Membrane - drug effects</topic><topic>Circular Dichroism</topic><topic>Cloning</topic><topic>Conformation</topic><topic>Dichroism</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Escherichia coli - drug effects</topic><topic>Immune response</topic><topic>Innate immunity</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - isolation &amp; purification</topic><topic>Insect Proteins - metabolism</topic><topic>Insects</topic><topic>lepidopteran</topic><topic>Microbial Sensitivity Tests</topic><topic>moricin</topic><topic>Moths - genetics</topic><topic>Moths - immunology</topic><topic>Moths - metabolism</topic><topic>Peptides</topic><topic>Pests</topic><topic>Plutella xylostella</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Scanning electron microscopy</topic><topic>Scanning microscopy</topic><topic>Secondary structure</topic><topic>Sequence Analysis, DNA</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Structural analysis</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, X.‐F.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Yu, X.‐Q.</creatorcontrib><creatorcontrib>Lin, J.‐H.</creatorcontrib><creatorcontrib>Li, S.‐Y.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>You, M.‐S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, X.‐F.</au><au>Li, Y.</au><au>Yu, X.‐Q.</au><au>Lin, J.‐H.</au><au>Li, S.‐Y.</au><au>Li, Q.</au><au>You, M.‐S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>564</spage><epage>573</epage><pages>564-573</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28621439</pmid><doi>10.1111/imb.12319</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1075
ispartof Insect molecular biology, 2017-10, Vol.26 (5), p.564-573
issn 0962-1075
1365-2583
language eng
recordid cdi_proquest_miscellaneous_1910798275
source MEDLINE; Wiley Journals
subjects AMPs
Animals
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
Antimicrobial Cationic Peptides - genetics
Antimicrobial Cationic Peptides - isolation & purification
Antimicrobial Cationic Peptides - pharmacology
Antimicrobial peptides
Bacteria
Butterflies & moths
Cell Membrane - drug effects
Circular Dichroism
Cloning
Conformation
Dichroism
E coli
Electron microscopy
Escherichia coli - drug effects
Immune response
Innate immunity
Insect Proteins - genetics
Insect Proteins - isolation & purification
Insect Proteins - metabolism
Insects
lepidopteran
Microbial Sensitivity Tests
moricin
Moths - genetics
Moths - immunology
Moths - metabolism
Peptides
Pests
Plutella xylostella
Protein structure
Protein Structure, Secondary
Scanning electron microscopy
Scanning microscopy
Secondary structure
Sequence Analysis, DNA
Staphylococcus aureus - drug effects
Structural analysis
Vegetables
title Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20and%20functional%20identification%20of%20moricins%20from%20the%20diamondback%20moth,%20Plutella%20xylostella%20(L.)&rft.jtitle=Insect%20molecular%20biology&rft.au=Xia,%20X.%E2%80%90F.&rft.date=2017-10&rft.volume=26&rft.issue=5&rft.spage=564&rft.epage=573&rft.pages=564-573&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/imb.12319&rft_dat=%3Cproquest_cross%3E1934950136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934950136&rft_id=info:pmid/28621439&rfr_iscdi=true