Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)
Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylos...
Gespeichert in:
Veröffentlicht in: | Insect molecular biology 2017-10, Vol.26 (5), p.564-573 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 573 |
---|---|
container_issue | 5 |
container_start_page | 564 |
container_title | Insect molecular biology |
container_volume | 26 |
creator | Xia, X.‐F. Li, Y. Yu, X.‐Q. Lin, J.‐H. Li, S.‐Y. Li, Q. You, M.‐S. |
description | Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin. |
doi_str_mv | 10.1111/imb.12319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1910798275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934950136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRuDk9-A8YEi9bYjcopStHXfyxZEYPem4oBcekoKWN7r-X2unBxHd5L_DJN-99ADjFaIpDzXRVTHFMMNsDQ0xSGsU0I_tgiFgaRxjN6QAceb9BCGUsZYdgEGdpjBPChkAujLPavkBuS6haKxrtLDdQl9I2WmnBuwfoFKxcrYW2HqraVbBZS1hqXjlbFly8ht9mfQEfTdtIYzj83Brn-3G8mk6OwYHixsuTXR-B55vrp8VdtHq4XS4uV5EglLAoxXMkRapKRLBQWaK4UALJRKSIJ0iRosgSSgSjUkmuMkSJTAqcFJLFSOBSkREY97lvtXtvpW_ySnvRrWGla32OWbDBsnhOA3r-B924tg6ndxRJGEXBZKAmPSVq530tVf5W64rX2xyjvHOfB_f5t_vAnu0S26KS5S_5IzsAsx740EZu_0_Kl_dXfeQXgJeOAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934950136</pqid></control><display><type>article</type><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</creator><creatorcontrib>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</creatorcontrib><description>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/imb.12319</identifier><identifier>PMID: 28621439</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>AMPs ; Animals ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Antimicrobial Cationic Peptides - genetics ; Antimicrobial Cationic Peptides - isolation & purification ; Antimicrobial Cationic Peptides - pharmacology ; Antimicrobial peptides ; Bacteria ; Butterflies & moths ; Cell Membrane - drug effects ; Circular Dichroism ; Cloning ; Conformation ; Dichroism ; E coli ; Electron microscopy ; Escherichia coli - drug effects ; Immune response ; Innate immunity ; Insect Proteins - genetics ; Insect Proteins - isolation & purification ; Insect Proteins - metabolism ; Insects ; lepidopteran ; Microbial Sensitivity Tests ; moricin ; Moths - genetics ; Moths - immunology ; Moths - metabolism ; Peptides ; Pests ; Plutella xylostella ; Protein structure ; Protein Structure, Secondary ; Scanning electron microscopy ; Scanning microscopy ; Secondary structure ; Sequence Analysis, DNA ; Staphylococcus aureus - drug effects ; Structural analysis ; Vegetables</subject><ispartof>Insect molecular biology, 2017-10, Vol.26 (5), p.564-573</ispartof><rights>2017 The Royal Entomological Society</rights><rights>2017 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</citedby><cites>FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fimb.12319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fimb.12319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28621439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, X.‐F.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Yu, X.‐Q.</creatorcontrib><creatorcontrib>Lin, J.‐H.</creatorcontrib><creatorcontrib>Li, S.‐Y.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>You, M.‐S.</creatorcontrib><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</description><subject>AMPs</subject><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial Cationic Peptides - genetics</subject><subject>Antimicrobial Cationic Peptides - isolation & purification</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Butterflies & moths</subject><subject>Cell Membrane - drug effects</subject><subject>Circular Dichroism</subject><subject>Cloning</subject><subject>Conformation</subject><subject>Dichroism</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Escherichia coli - drug effects</subject><subject>Immune response</subject><subject>Innate immunity</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - isolation & purification</subject><subject>Insect Proteins - metabolism</subject><subject>Insects</subject><subject>lepidopteran</subject><subject>Microbial Sensitivity Tests</subject><subject>moricin</subject><subject>Moths - genetics</subject><subject>Moths - immunology</subject><subject>Moths - metabolism</subject><subject>Peptides</subject><subject>Pests</subject><subject>Plutella xylostella</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Scanning electron microscopy</subject><subject>Scanning microscopy</subject><subject>Secondary structure</subject><subject>Sequence Analysis, DNA</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Structural analysis</subject><subject>Vegetables</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9PwyAUx4nRuDk9-A8YEi9bYjcopStHXfyxZEYPem4oBcekoKWN7r-X2unBxHd5L_DJN-99ADjFaIpDzXRVTHFMMNsDQ0xSGsU0I_tgiFgaRxjN6QAceb9BCGUsZYdgEGdpjBPChkAujLPavkBuS6haKxrtLDdQl9I2WmnBuwfoFKxcrYW2HqraVbBZS1hqXjlbFly8ht9mfQEfTdtIYzj83Brn-3G8mk6OwYHixsuTXR-B55vrp8VdtHq4XS4uV5EglLAoxXMkRapKRLBQWaK4UALJRKSIJ0iRosgSSgSjUkmuMkSJTAqcFJLFSOBSkREY97lvtXtvpW_ySnvRrWGla32OWbDBsnhOA3r-B924tg6ndxRJGEXBZKAmPSVq530tVf5W64rX2xyjvHOfB_f5t_vAnu0S26KS5S_5IzsAsx740EZu_0_Kl_dXfeQXgJeOAA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Xia, X.‐F.</creator><creator>Li, Y.</creator><creator>Yu, X.‐Q.</creator><creator>Lin, J.‐H.</creator><creator>Li, S.‐Y.</creator><creator>Li, Q.</creator><creator>You, M.‐S.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</title><author>Xia, X.‐F. ; Li, Y. ; Yu, X.‐Q. ; Lin, J.‐H. ; Li, S.‐Y. ; Li, Q. ; You, M.‐S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-6170ec6fd031cf84facfc0e4c60a40f3bb8453c95efeaf8053e4b14be920c1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AMPs</topic><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial Cationic Peptides - genetics</topic><topic>Antimicrobial Cationic Peptides - isolation & purification</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Butterflies & moths</topic><topic>Cell Membrane - drug effects</topic><topic>Circular Dichroism</topic><topic>Cloning</topic><topic>Conformation</topic><topic>Dichroism</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Escherichia coli - drug effects</topic><topic>Immune response</topic><topic>Innate immunity</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - isolation & purification</topic><topic>Insect Proteins - metabolism</topic><topic>Insects</topic><topic>lepidopteran</topic><topic>Microbial Sensitivity Tests</topic><topic>moricin</topic><topic>Moths - genetics</topic><topic>Moths - immunology</topic><topic>Moths - metabolism</topic><topic>Peptides</topic><topic>Pests</topic><topic>Plutella xylostella</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Scanning electron microscopy</topic><topic>Scanning microscopy</topic><topic>Secondary structure</topic><topic>Sequence Analysis, DNA</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Structural analysis</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, X.‐F.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Yu, X.‐Q.</creatorcontrib><creatorcontrib>Lin, J.‐H.</creatorcontrib><creatorcontrib>Li, S.‐Y.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>You, M.‐S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, X.‐F.</au><au>Li, Y.</au><au>Yu, X.‐Q.</au><au>Lin, J.‐H.</au><au>Li, S.‐Y.</au><au>Li, Q.</au><au>You, M.‐S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.)</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>564</spage><epage>573</epage><pages>564-573</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Antimicrobial peptides (AMPs) are small‐molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full‐length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α‐helical structure in the membrane‐like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser‐scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28621439</pmid><doi>10.1111/imb.12319</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1075 |
ispartof | Insect molecular biology, 2017-10, Vol.26 (5), p.564-573 |
issn | 0962-1075 1365-2583 |
language | eng |
recordid | cdi_proquest_miscellaneous_1910798275 |
source | MEDLINE; Wiley Journals |
subjects | AMPs Animals Antiinfectives and antibacterials Antimicrobial activity Antimicrobial agents Antimicrobial Cationic Peptides - genetics Antimicrobial Cationic Peptides - isolation & purification Antimicrobial Cationic Peptides - pharmacology Antimicrobial peptides Bacteria Butterflies & moths Cell Membrane - drug effects Circular Dichroism Cloning Conformation Dichroism E coli Electron microscopy Escherichia coli - drug effects Immune response Innate immunity Insect Proteins - genetics Insect Proteins - isolation & purification Insect Proteins - metabolism Insects lepidopteran Microbial Sensitivity Tests moricin Moths - genetics Moths - immunology Moths - metabolism Peptides Pests Plutella xylostella Protein structure Protein Structure, Secondary Scanning electron microscopy Scanning microscopy Secondary structure Sequence Analysis, DNA Staphylococcus aureus - drug effects Structural analysis Vegetables |
title | Cloning and functional identification of moricins from the diamondback moth, Plutella xylostella (L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20and%20functional%20identification%20of%20moricins%20from%20the%20diamondback%20moth,%20Plutella%20xylostella%20(L.)&rft.jtitle=Insect%20molecular%20biology&rft.au=Xia,%20X.%E2%80%90F.&rft.date=2017-10&rft.volume=26&rft.issue=5&rft.spage=564&rft.epage=573&rft.pages=564-573&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/imb.12319&rft_dat=%3Cproquest_cross%3E1934950136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934950136&rft_id=info:pmid/28621439&rfr_iscdi=true |