General scaling relations for locomotion in granular media

Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-05, Vol.95 (5-1), p.052901-052901, Article 052901
Hauptverfasser: Slonaker, James, Motley, D Carrington, Zhang, Qiong, Townsend, Stephen, Senatore, Carmine, Iagnemma, Karl, Kamrin, Ken
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052901
container_issue 5-1
container_start_page 052901
container_title Physical review. E
container_volume 95
creator Slonaker, James
Motley, D Carrington
Zhang, Qiong
Townsend, Stephen
Senatore, Carmine
Iagnemma, Karl
Kamrin, Ken
description Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.
doi_str_mv 10.1103/PhysRevE.95.052901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1910796395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910796395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-57ae26ef43314f0457b684470a2164740c3c21ecc7a8ed98a909b31847ac95273</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMottT-Ax5kj162zuRjs_EmpVahoIieQ5pm60p2U5Ou0P_eLf04zQy893jzI-QWYYII7OH9e5c-3N9sosQEBFWAF2RIuYQcQLDL887FgIxT-gEALEBJpNdkQMsCS1HKIXmcu9ZF47Nkja_bdRadN9s6tCmrQsx8sKEJ-zur22wdTdt5E7PGrWpzQ64q45MbH-eIfD3PPqcv-eJt_jp9WuSWI9vmQhpHC1dxxpBXfR-5LErelzMUCy45WGYpOmulKd1KlUaBWjIsuTRWCSrZiNwfcjcx_HYubXVTJ-u8N60LXdKoEKQqmBK9lB6kNoaUoqv0JtaNiTuNoPfY9AmbVkIfsPWmu2N-t-wfO1tOkNg_a21oog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910796395</pqid></control><display><type>article</type><title>General scaling relations for locomotion in granular media</title><source>American Physical Society Journals</source><creator>Slonaker, James ; Motley, D Carrington ; Zhang, Qiong ; Townsend, Stephen ; Senatore, Carmine ; Iagnemma, Karl ; Kamrin, Ken</creator><creatorcontrib>Slonaker, James ; Motley, D Carrington ; Zhang, Qiong ; Townsend, Stephen ; Senatore, Carmine ; Iagnemma, Karl ; Kamrin, Ken</creatorcontrib><description>Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.95.052901</identifier><identifier>PMID: 28618587</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-05, Vol.95 (5-1), p.052901-052901, Article 052901</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-57ae26ef43314f0457b684470a2164740c3c21ecc7a8ed98a909b31847ac95273</citedby><cites>FETCH-LOGICAL-c413t-57ae26ef43314f0457b684470a2164740c3c21ecc7a8ed98a909b31847ac95273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28618587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slonaker, James</creatorcontrib><creatorcontrib>Motley, D Carrington</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Townsend, Stephen</creatorcontrib><creatorcontrib>Senatore, Carmine</creatorcontrib><creatorcontrib>Iagnemma, Karl</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><title>General scaling relations for locomotion in granular media</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMottT-Ax5kj162zuRjs_EmpVahoIieQ5pm60p2U5Ou0P_eLf04zQy893jzI-QWYYII7OH9e5c-3N9sosQEBFWAF2RIuYQcQLDL887FgIxT-gEALEBJpNdkQMsCS1HKIXmcu9ZF47Nkja_bdRadN9s6tCmrQsx8sKEJ-zur22wdTdt5E7PGrWpzQ64q45MbH-eIfD3PPqcv-eJt_jp9WuSWI9vmQhpHC1dxxpBXfR-5LErelzMUCy45WGYpOmulKd1KlUaBWjIsuTRWCSrZiNwfcjcx_HYubXVTJ-u8N60LXdKoEKQqmBK9lB6kNoaUoqv0JtaNiTuNoPfY9AmbVkIfsPWmu2N-t-wfO1tOkNg_a21oog</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Slonaker, James</creator><creator>Motley, D Carrington</creator><creator>Zhang, Qiong</creator><creator>Townsend, Stephen</creator><creator>Senatore, Carmine</creator><creator>Iagnemma, Karl</creator><creator>Kamrin, Ken</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>General scaling relations for locomotion in granular media</title><author>Slonaker, James ; Motley, D Carrington ; Zhang, Qiong ; Townsend, Stephen ; Senatore, Carmine ; Iagnemma, Karl ; Kamrin, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-57ae26ef43314f0457b684470a2164740c3c21ecc7a8ed98a909b31847ac95273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slonaker, James</creatorcontrib><creatorcontrib>Motley, D Carrington</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Townsend, Stephen</creatorcontrib><creatorcontrib>Senatore, Carmine</creatorcontrib><creatorcontrib>Iagnemma, Karl</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slonaker, James</au><au>Motley, D Carrington</au><au>Zhang, Qiong</au><au>Townsend, Stephen</au><au>Senatore, Carmine</au><au>Iagnemma, Karl</au><au>Kamrin, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General scaling relations for locomotion in granular media</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>95</volume><issue>5-1</issue><spage>052901</spage><epage>052901</epage><pages>052901-052901</pages><artnum>052901</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.</abstract><cop>United States</cop><pmid>28618587</pmid><doi>10.1103/PhysRevE.95.052901</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-05, Vol.95 (5-1), p.052901-052901, Article 052901
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1910796395
source American Physical Society Journals
title General scaling relations for locomotion in granular media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20scaling%20relations%20for%20locomotion%20in%20granular%20media&rft.jtitle=Physical%20review.%20E&rft.au=Slonaker,%20James&rft.date=2017-05-01&rft.volume=95&rft.issue=5-1&rft.spage=052901&rft.epage=052901&rft.pages=052901-052901&rft.artnum=052901&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.95.052901&rft_dat=%3Cproquest_cross%3E1910796395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910796395&rft_id=info:pmid/28618587&rfr_iscdi=true