Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration
Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2017-10, Vol.105 (10), p.2750-2761 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2761 |
---|---|
container_issue | 10 |
container_start_page | 2750 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 105 |
creator | Jiang, Yanan Wang, Bi Jia, Zhanrong Lu, Xiong Fang, Liming Wang, Kefeng Ren, Fuzeng |
description | Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017. |
doi_str_mv | 10.1002/jbm.a.36138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1909234243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909234243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoqWwYo8ssUFCOfiW27KtuKoIFrCOJs6kx0eJHexEkB2PwIvwUjwJE04BiQXywtb48zce_Yw9lGInhVDPDu24g50upK5usVOZ5yozdZHf3s6mzrSqixN2L6UDwYXI1V12oqpCVEbJU_b9fRjWLkwwOo98xM7BjB2HlHBsh5WHnu_XLoYvK0wwuxm5B094nJ0dMHHwHW_D9jTEaR-u0SPd8CmGGZ3_8fWb4sHzEa49JreMHIYhrIn3IXL0e_CWmtkQY0iOuEhQmrfqX3HETRqpefD32Z0ehoQPbvYz9vHF8w-Xr7Krdy9fX55fZVbTYFlbQlFqUXaVEcJKWrXoequgL7vcmjavjBRS26rHHPpclq0RvQLRKpMra0p9xp4cvTTHpwXT3IwuWRwG8BiW1Mha1EobZTShj_9BD2GJnn5HlFaVMErVRD09UpYmTRH7ZopuhLg2UjRbig2l2EDzK0WiH904l5Yi-cP-jo0AdQQ-uwHX_7maNxdvz4_Wn-qyrVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932804229</pqid></control><display><type>article</type><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</creator><creatorcontrib>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</creatorcontrib><description>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36138</identifier><identifier>PMID: 28608421</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adhesion tests ; Adhesive bonding ; Alloys ; Alloys - chemistry ; Animals ; Assembly ; Biocompatibility ; Biodegradability ; Biodegradation ; Biomedical materials ; Bonding strength ; Bone growth ; Bone implants ; Bone morphogenetic protein 2 ; Bone Morphogenetic Protein 2 - administration & dosage ; Bone Morphogenetic Protein 2 - pharmacology ; bone regeneration ; Bone Regeneration - drug effects ; Cell adhesion ; Cell culture ; Coated Materials, Biocompatible - chemistry ; Coating effects ; Corrosion ; Corrosion potential ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion tests ; Cortical bone ; Degradation ; Durapatite - chemistry ; Electrochemical corrosion ; Electrochemistry ; Hydrogen evolution ; Hydroxyapatite ; hydroxyapatite nanoparticles ; Immobilization ; Implantation ; In vivo methods and tests ; Indoles - chemistry ; Inflammation ; Magnesium ; Magnesium - chemistry ; magnesium alloys ; Magnesium base alloys ; Mesenchymal Stromal Cells - cytology ; Nanoparticles ; Nanoparticles - chemistry ; Osteogenesis ; polydopamine ; Polymers - chemistry ; Protective coatings ; Rabbits ; Rats, Sprague-Dawley ; Regeneration ; Surface Properties ; Surgical implants ; Synergistic effect ; Therapeutic applications ; Wettability</subject><ispartof>Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2750-2761</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</citedby><cites>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28608421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yanan</creatorcontrib><creatorcontrib>Wang, Bi</creatorcontrib><creatorcontrib>Jia, Zhanrong</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</description><subject>Adhesion tests</subject><subject>Adhesive bonding</subject><subject>Alloys</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Assembly</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone Morphogenetic Protein 2 - administration & dosage</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell adhesion</subject><subject>Cell culture</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating effects</subject><subject>Corrosion</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion tests</subject><subject>Cortical bone</subject><subject>Degradation</subject><subject>Durapatite - chemistry</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Hydrogen evolution</subject><subject>Hydroxyapatite</subject><subject>hydroxyapatite nanoparticles</subject><subject>Immobilization</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Indoles - chemistry</subject><subject>Inflammation</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Osteogenesis</subject><subject>polydopamine</subject><subject>Polymers - chemistry</subject><subject>Protective coatings</subject><subject>Rabbits</subject><subject>Rats, Sprague-Dawley</subject><subject>Regeneration</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Synergistic effect</subject><subject>Therapeutic applications</subject><subject>Wettability</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhi0EoqWwYo8ssUFCOfiW27KtuKoIFrCOJs6kx0eJHexEkB2PwIvwUjwJE04BiQXywtb48zce_Yw9lGInhVDPDu24g50upK5usVOZ5yozdZHf3s6mzrSqixN2L6UDwYXI1V12oqpCVEbJU_b9fRjWLkwwOo98xM7BjB2HlHBsh5WHnu_XLoYvK0wwuxm5B094nJ0dMHHwHW_D9jTEaR-u0SPd8CmGGZ3_8fWb4sHzEa49JreMHIYhrIn3IXL0e_CWmtkQY0iOuEhQmrfqX3HETRqpefD32Z0ehoQPbvYz9vHF8w-Xr7Krdy9fX55fZVbTYFlbQlFqUXaVEcJKWrXoequgL7vcmjavjBRS26rHHPpclq0RvQLRKpMra0p9xp4cvTTHpwXT3IwuWRwG8BiW1Mha1EobZTShj_9BD2GJnn5HlFaVMErVRD09UpYmTRH7ZopuhLg2UjRbig2l2EDzK0WiH904l5Yi-cP-jo0AdQQ-uwHX_7maNxdvz4_Wn-qyrVU</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Jiang, Yanan</creator><creator>Wang, Bi</creator><creator>Jia, Zhanrong</creator><creator>Lu, Xiong</creator><creator>Fang, Liming</creator><creator>Wang, Kefeng</creator><creator>Ren, Fuzeng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><author>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion tests</topic><topic>Adhesive bonding</topic><topic>Alloys</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Assembly</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone Morphogenetic Protein 2 - administration & dosage</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell adhesion</topic><topic>Cell culture</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating effects</topic><topic>Corrosion</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion tests</topic><topic>Cortical bone</topic><topic>Degradation</topic><topic>Durapatite - chemistry</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Hydrogen evolution</topic><topic>Hydroxyapatite</topic><topic>hydroxyapatite nanoparticles</topic><topic>Immobilization</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Indoles - chemistry</topic><topic>Inflammation</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Osteogenesis</topic><topic>polydopamine</topic><topic>Polymers - chemistry</topic><topic>Protective coatings</topic><topic>Rabbits</topic><topic>Rats, Sprague-Dawley</topic><topic>Regeneration</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Synergistic effect</topic><topic>Therapeutic applications</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yanan</creatorcontrib><creatorcontrib>Wang, Bi</creatorcontrib><creatorcontrib>Jia, Zhanrong</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yanan</au><au>Wang, Bi</au><au>Jia, Zhanrong</au><au>Lu, Xiong</au><au>Fang, Liming</au><au>Wang, Kefeng</au><au>Ren, Fuzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-10</date><risdate>2017</risdate><volume>105</volume><issue>10</issue><spage>2750</spage><epage>2761</epage><pages>2750-2761</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28608421</pmid><doi>10.1002/jbm.a.36138</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2750-2761 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1909234243 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adhesion tests Adhesive bonding Alloys Alloys - chemistry Animals Assembly Biocompatibility Biodegradability Biodegradation Biomedical materials Bonding strength Bone growth Bone implants Bone morphogenetic protein 2 Bone Morphogenetic Protein 2 - administration & dosage Bone Morphogenetic Protein 2 - pharmacology bone regeneration Bone Regeneration - drug effects Cell adhesion Cell culture Coated Materials, Biocompatible - chemistry Coating effects Corrosion Corrosion potential Corrosion rate Corrosion resistance Corrosion resistant alloys Corrosion tests Cortical bone Degradation Durapatite - chemistry Electrochemical corrosion Electrochemistry Hydrogen evolution Hydroxyapatite hydroxyapatite nanoparticles Immobilization Implantation In vivo methods and tests Indoles - chemistry Inflammation Magnesium Magnesium - chemistry magnesium alloys Magnesium base alloys Mesenchymal Stromal Cells - cytology Nanoparticles Nanoparticles - chemistry Osteogenesis polydopamine Polymers - chemistry Protective coatings Rabbits Rats, Sprague-Dawley Regeneration Surface Properties Surgical implants Synergistic effect Therapeutic applications Wettability |
title | Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20mediated%20assembly%20of%20hydroxyapatite%20nanoparticles%20and%20bone%20morphogenetic%20protein%E2%80%902%20on%20magnesium%20alloys%20for%20enhanced%20corrosion%20resistance%20and%20bone%20regeneration&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Jiang,%20Yanan&rft.date=2017-10&rft.volume=105&rft.issue=10&rft.spage=2750&rft.epage=2761&rft.pages=2750-2761&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36138&rft_dat=%3Cproquest_cross%3E1909234243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932804229&rft_id=info:pmid/28608421&rfr_iscdi=true |