Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration

Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-10, Vol.105 (10), p.2750-2761
Hauptverfasser: Jiang, Yanan, Wang, Bi, Jia, Zhanrong, Lu, Xiong, Fang, Liming, Wang, Kefeng, Ren, Fuzeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2761
container_issue 10
container_start_page 2750
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Jiang, Yanan
Wang, Bi
Jia, Zhanrong
Lu, Xiong
Fang, Liming
Wang, Kefeng
Ren, Fuzeng
description Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.
doi_str_mv 10.1002/jbm.a.36138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1909234243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909234243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoqWwYo8ssUFCOfiW27KtuKoIFrCOJs6kx0eJHexEkB2PwIvwUjwJE04BiQXywtb48zce_Yw9lGInhVDPDu24g50upK5usVOZ5yozdZHf3s6mzrSqixN2L6UDwYXI1V12oqpCVEbJU_b9fRjWLkwwOo98xM7BjB2HlHBsh5WHnu_XLoYvK0wwuxm5B094nJ0dMHHwHW_D9jTEaR-u0SPd8CmGGZ3_8fWb4sHzEa49JreMHIYhrIn3IXL0e_CWmtkQY0iOuEhQmrfqX3HETRqpefD32Z0ehoQPbvYz9vHF8w-Xr7Krdy9fX55fZVbTYFlbQlFqUXaVEcJKWrXoequgL7vcmjavjBRS26rHHPpclq0RvQLRKpMra0p9xp4cvTTHpwXT3IwuWRwG8BiW1Mha1EobZTShj_9BD2GJnn5HlFaVMErVRD09UpYmTRH7ZopuhLg2UjRbig2l2EDzK0WiH904l5Yi-cP-jo0AdQQ-uwHX_7maNxdvz4_Wn-qyrVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932804229</pqid></control><display><type>article</type><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</creator><creatorcontrib>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</creatorcontrib><description>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36138</identifier><identifier>PMID: 28608421</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adhesion tests ; Adhesive bonding ; Alloys ; Alloys - chemistry ; Animals ; Assembly ; Biocompatibility ; Biodegradability ; Biodegradation ; Biomedical materials ; Bonding strength ; Bone growth ; Bone implants ; Bone morphogenetic protein 2 ; Bone Morphogenetic Protein 2 - administration &amp; dosage ; Bone Morphogenetic Protein 2 - pharmacology ; bone regeneration ; Bone Regeneration - drug effects ; Cell adhesion ; Cell culture ; Coated Materials, Biocompatible - chemistry ; Coating effects ; Corrosion ; Corrosion potential ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion tests ; Cortical bone ; Degradation ; Durapatite - chemistry ; Electrochemical corrosion ; Electrochemistry ; Hydrogen evolution ; Hydroxyapatite ; hydroxyapatite nanoparticles ; Immobilization ; Implantation ; In vivo methods and tests ; Indoles - chemistry ; Inflammation ; Magnesium ; Magnesium - chemistry ; magnesium alloys ; Magnesium base alloys ; Mesenchymal Stromal Cells - cytology ; Nanoparticles ; Nanoparticles - chemistry ; Osteogenesis ; polydopamine ; Polymers - chemistry ; Protective coatings ; Rabbits ; Rats, Sprague-Dawley ; Regeneration ; Surface Properties ; Surgical implants ; Synergistic effect ; Therapeutic applications ; Wettability</subject><ispartof>Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2750-2761</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</citedby><cites>FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28608421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yanan</creatorcontrib><creatorcontrib>Wang, Bi</creatorcontrib><creatorcontrib>Jia, Zhanrong</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</description><subject>Adhesion tests</subject><subject>Adhesive bonding</subject><subject>Alloys</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Assembly</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone Morphogenetic Protein 2 - administration &amp; dosage</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell adhesion</subject><subject>Cell culture</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating effects</subject><subject>Corrosion</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion tests</subject><subject>Cortical bone</subject><subject>Degradation</subject><subject>Durapatite - chemistry</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Hydrogen evolution</subject><subject>Hydroxyapatite</subject><subject>hydroxyapatite nanoparticles</subject><subject>Immobilization</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Indoles - chemistry</subject><subject>Inflammation</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Osteogenesis</subject><subject>polydopamine</subject><subject>Polymers - chemistry</subject><subject>Protective coatings</subject><subject>Rabbits</subject><subject>Rats, Sprague-Dawley</subject><subject>Regeneration</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Synergistic effect</subject><subject>Therapeutic applications</subject><subject>Wettability</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhi0EoqWwYo8ssUFCOfiW27KtuKoIFrCOJs6kx0eJHexEkB2PwIvwUjwJE04BiQXywtb48zce_Yw9lGInhVDPDu24g50upK5usVOZ5yozdZHf3s6mzrSqixN2L6UDwYXI1V12oqpCVEbJU_b9fRjWLkwwOo98xM7BjB2HlHBsh5WHnu_XLoYvK0wwuxm5B094nJ0dMHHwHW_D9jTEaR-u0SPd8CmGGZ3_8fWb4sHzEa49JreMHIYhrIn3IXL0e_CWmtkQY0iOuEhQmrfqX3HETRqpefD32Z0ehoQPbvYz9vHF8w-Xr7Krdy9fX55fZVbTYFlbQlFqUXaVEcJKWrXoequgL7vcmjavjBRS26rHHPpclq0RvQLRKpMra0p9xp4cvTTHpwXT3IwuWRwG8BiW1Mha1EobZTShj_9BD2GJnn5HlFaVMErVRD09UpYmTRH7ZopuhLg2UjRbig2l2EDzK0WiH904l5Yi-cP-jo0AdQQ-uwHX_7maNxdvz4_Wn-qyrVU</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Jiang, Yanan</creator><creator>Wang, Bi</creator><creator>Jia, Zhanrong</creator><creator>Lu, Xiong</creator><creator>Fang, Liming</creator><creator>Wang, Kefeng</creator><creator>Ren, Fuzeng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</title><author>Jiang, Yanan ; Wang, Bi ; Jia, Zhanrong ; Lu, Xiong ; Fang, Liming ; Wang, Kefeng ; Ren, Fuzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3608-b7a67307d8400c1c1c90dfc2af7d5c4b5841013c8fe5af517b40f2a0b2452c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion tests</topic><topic>Adhesive bonding</topic><topic>Alloys</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Assembly</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone Morphogenetic Protein 2 - administration &amp; dosage</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell adhesion</topic><topic>Cell culture</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating effects</topic><topic>Corrosion</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion tests</topic><topic>Cortical bone</topic><topic>Degradation</topic><topic>Durapatite - chemistry</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Hydrogen evolution</topic><topic>Hydroxyapatite</topic><topic>hydroxyapatite nanoparticles</topic><topic>Immobilization</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Indoles - chemistry</topic><topic>Inflammation</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Osteogenesis</topic><topic>polydopamine</topic><topic>Polymers - chemistry</topic><topic>Protective coatings</topic><topic>Rabbits</topic><topic>Rats, Sprague-Dawley</topic><topic>Regeneration</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Synergistic effect</topic><topic>Therapeutic applications</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yanan</creatorcontrib><creatorcontrib>Wang, Bi</creatorcontrib><creatorcontrib>Jia, Zhanrong</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yanan</au><au>Wang, Bi</au><au>Jia, Zhanrong</au><au>Lu, Xiong</au><au>Fang, Liming</au><au>Wang, Kefeng</au><au>Ren, Fuzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-10</date><risdate>2017</risdate><volume>105</volume><issue>10</issue><spage>2750</spage><epage>2761</epage><pages>2750-2761</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein‐2 (BMP‐2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP‐2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP‐2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750–2761, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28608421</pmid><doi>10.1002/jbm.a.36138</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2750-2761
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1909234243
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adhesion tests
Adhesive bonding
Alloys
Alloys - chemistry
Animals
Assembly
Biocompatibility
Biodegradability
Biodegradation
Biomedical materials
Bonding strength
Bone growth
Bone implants
Bone morphogenetic protein 2
Bone Morphogenetic Protein 2 - administration & dosage
Bone Morphogenetic Protein 2 - pharmacology
bone regeneration
Bone Regeneration - drug effects
Cell adhesion
Cell culture
Coated Materials, Biocompatible - chemistry
Coating effects
Corrosion
Corrosion potential
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Corrosion tests
Cortical bone
Degradation
Durapatite - chemistry
Electrochemical corrosion
Electrochemistry
Hydrogen evolution
Hydroxyapatite
hydroxyapatite nanoparticles
Immobilization
Implantation
In vivo methods and tests
Indoles - chemistry
Inflammation
Magnesium
Magnesium - chemistry
magnesium alloys
Magnesium base alloys
Mesenchymal Stromal Cells - cytology
Nanoparticles
Nanoparticles - chemistry
Osteogenesis
polydopamine
Polymers - chemistry
Protective coatings
Rabbits
Rats, Sprague-Dawley
Regeneration
Surface Properties
Surgical implants
Synergistic effect
Therapeutic applications
Wettability
title Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein‐2 on magnesium alloys for enhanced corrosion resistance and bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20mediated%20assembly%20of%20hydroxyapatite%20nanoparticles%20and%20bone%20morphogenetic%20protein%E2%80%902%20on%20magnesium%20alloys%20for%20enhanced%20corrosion%20resistance%20and%20bone%20regeneration&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Jiang,%20Yanan&rft.date=2017-10&rft.volume=105&rft.issue=10&rft.spage=2750&rft.epage=2761&rft.pages=2750-2761&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36138&rft_dat=%3Cproquest_cross%3E1909234243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932804229&rft_id=info:pmid/28608421&rfr_iscdi=true