Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes

Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras–Akt signaling pathway, which bypasses PI3K–Akt-mediated insulin re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Obesity 2017-10, Vol.41 (10), p.1601-1605
Hauptverfasser: Yoon, I-S, Park, S, Kim, R-H, Ko, H L, Nam, J-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 10
container_start_page 1601
container_title International Journal of Obesity
container_volume 41
creator Yoon, I-S
Park, S
Kim, R-H
Ko, H L
Nam, J-H
description Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras–Akt signaling pathway, which bypasses PI3K–Akt-mediated insulin receptor signaling. E4orf1 , a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence ( ATS ) to the 5′ end of E4orf1 ( ATS–E4orf1 ). In vitro transfection of ATS–E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin ( HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS–E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS–E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS–E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS–E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.
doi_str_mv 10.1038/ijo.2017.142
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1909232991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A507816557</galeid><sourcerecordid>A507816557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-1954f2ea81cd24b81b907fa2d2194ab3e9e645569395d39b0e0907bf4bb156093</originalsourceid><addsrcrecordid>eNp9klFrFDEUhQdR7Fp981kCgvjgrEkmmUweS6laKPiizyGZudnNMpOMSYayf8FfbXa3aitFAkkI3z33XHKq6jXBa4Kb7qPbhTXFRKwJo0-qFWGirTmT4mm1wg0WNeYtP6tepLTDGHOO6fPqjHYtFoyzVfXz2qdldL5Os47Ob5D2A7KL3zgzAgJroc8JBYuuWIiWoD5MxnkY0K3L2wIjPbg59PsMddZxA_mgkeDHAr4H5DyawpKg7AOMR528nwGRY5vjlaLBaQMZ0svqmdVjgld353n1_dPVt8sv9c3Xz9eXFzd1z7om10RyZinojvQDZaYjRmJhNR0okUybBiS0jPNWNpIPjTQYcAGMZcYQ3mLZnFfvT7pzDMVnympyqYdx1B6KWUUklrShUpKCvv0H3YUl-uJO0ZZwTmVX_uA_VLHEBe9E1_ylNnoE5bwNOer-0FpdcCw60nIuCrV-hCprgMn1wYN15f1Bwbt7BVvQY96mMC7ZBZ8egh9OYB9DShGsmqObdNwrgtUhSaokSR2SpEqSCv7mbqjFTDD8gX9HpwD1CUjzITgQ7039mOAvLPTPLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945758783</pqid></control><display><type>article</type><title>Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yoon, I-S ; Park, S ; Kim, R-H ; Ko, H L ; Nam, J-H</creator><creatorcontrib>Yoon, I-S ; Park, S ; Kim, R-H ; Ko, H L ; Nam, J-H</creatorcontrib><description>Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras–Akt signaling pathway, which bypasses PI3K–Akt-mediated insulin receptor signaling. E4orf1 , a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence ( ATS ) to the 5′ end of E4orf1 ( ATS–E4orf1 ). In vitro transfection of ATS–E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin ( HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS–E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS–E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS–E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS–E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.</description><identifier>ISSN: 0307-0565</identifier><identifier>EISSN: 1476-5497</identifier><identifier>DOI: 10.1038/ijo.2017.142</identifier><identifier>PMID: 28607454</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/95 ; 38/109 ; 631/80 ; 64/60 ; 692/308 ; Adenovirus E4 Proteins - genetics ; Adenovirus E4 Proteins - metabolism ; Adipocytes ; Adipocytes - metabolism ; Adipogenesis ; AKT protein ; Animal models ; Animals ; Blood ; Bypasses ; Cell Culture Techniques ; Cellular signal transduction ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - virology ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 1 - virology ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - virology ; Diet, High-Fat ; Disease Models, Animal ; Epidemiology ; Gene expression ; Gene transfer ; Genetic aspects ; Glucose ; Glucose Transporter Type 4 - metabolism ; Health aspects ; Health Promotion and Disease Prevention ; Hemagglutinins ; Hepatocytes ; High fat diet ; Insulin ; Insulin - metabolism ; Insulin resistance ; Insulin Resistance - physiology ; Internal Medicine ; Ligands ; Liver ; Liver diseases ; Male ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Mice ; Obesity - metabolism ; Obesity - physiopathology ; Open reading frames ; Phosphatidylinositol 3-Kinases - metabolism ; Preadipocytes ; Properties ; Protein Transport ; Public Health ; Rodents ; scientific-correspondence ; Signal Transduction ; Signaling ; Streptozocin ; Transfection ; Translocation</subject><ispartof>International Journal of Obesity, 2017-10, Vol.41 (10), p.1601-1605</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-1954f2ea81cd24b81b907fa2d2194ab3e9e645569395d39b0e0907bf4bb156093</citedby><cites>FETCH-LOGICAL-c483t-1954f2ea81cd24b81b907fa2d2194ab3e9e645569395d39b0e0907bf4bb156093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ijo.2017.142$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ijo.2017.142$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28607454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, I-S</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Kim, R-H</creatorcontrib><creatorcontrib>Ko, H L</creatorcontrib><creatorcontrib>Nam, J-H</creatorcontrib><title>Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes</title><title>International Journal of Obesity</title><addtitle>Int J Obes</addtitle><addtitle>Int J Obes (Lond)</addtitle><description>Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras–Akt signaling pathway, which bypasses PI3K–Akt-mediated insulin receptor signaling. E4orf1 , a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence ( ATS ) to the 5′ end of E4orf1 ( ATS–E4orf1 ). In vitro transfection of ATS–E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin ( HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS–E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS–E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS–E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS–E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/95</subject><subject>38/109</subject><subject>631/80</subject><subject>64/60</subject><subject>692/308</subject><subject>Adenovirus E4 Proteins - genetics</subject><subject>Adenovirus E4 Proteins - metabolism</subject><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Adipogenesis</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Animals</subject><subject>Blood</subject><subject>Bypasses</subject><subject>Cell Culture Techniques</subject><subject>Cellular signal transduction</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - virology</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 1 - virology</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - virology</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>Epidemiology</subject><subject>Gene expression</subject><subject>Gene transfer</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>Health aspects</subject><subject>Health Promotion and Disease Prevention</subject><subject>Hemagglutinins</subject><subject>Hepatocytes</subject><subject>High fat diet</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Internal Medicine</subject><subject>Ligands</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Obesity - metabolism</subject><subject>Obesity - physiopathology</subject><subject>Open reading frames</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Preadipocytes</subject><subject>Properties</subject><subject>Protein Transport</subject><subject>Public Health</subject><subject>Rodents</subject><subject>scientific-correspondence</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Streptozocin</subject><subject>Transfection</subject><subject>Translocation</subject><issn>0307-0565</issn><issn>1476-5497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9klFrFDEUhQdR7Fp981kCgvjgrEkmmUweS6laKPiizyGZudnNMpOMSYayf8FfbXa3aitFAkkI3z33XHKq6jXBa4Kb7qPbhTXFRKwJo0-qFWGirTmT4mm1wg0WNeYtP6tepLTDGHOO6fPqjHYtFoyzVfXz2qdldL5Os47Ob5D2A7KL3zgzAgJroc8JBYuuWIiWoD5MxnkY0K3L2wIjPbg59PsMddZxA_mgkeDHAr4H5DyawpKg7AOMR528nwGRY5vjlaLBaQMZ0svqmdVjgld353n1_dPVt8sv9c3Xz9eXFzd1z7om10RyZinojvQDZaYjRmJhNR0okUybBiS0jPNWNpIPjTQYcAGMZcYQ3mLZnFfvT7pzDMVnympyqYdx1B6KWUUklrShUpKCvv0H3YUl-uJO0ZZwTmVX_uA_VLHEBe9E1_ylNnoE5bwNOer-0FpdcCw60nIuCrV-hCprgMn1wYN15f1Bwbt7BVvQY96mMC7ZBZ8egh9OYB9DShGsmqObdNwrgtUhSaokSR2SpEqSCv7mbqjFTDD8gX9HpwD1CUjzITgQ7039mOAvLPTPLA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Yoon, I-S</creator><creator>Park, S</creator><creator>Kim, R-H</creator><creator>Ko, H L</creator><creator>Nam, J-H</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes</title><author>Yoon, I-S ; Park, S ; Kim, R-H ; Ko, H L ; Nam, J-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-1954f2ea81cd24b81b907fa2d2194ab3e9e645569395d39b0e0907bf4bb156093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/95</topic><topic>38/109</topic><topic>631/80</topic><topic>64/60</topic><topic>692/308</topic><topic>Adenovirus E4 Proteins - genetics</topic><topic>Adenovirus E4 Proteins - metabolism</topic><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Adipogenesis</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Animals</topic><topic>Blood</topic><topic>Bypasses</topic><topic>Cell Culture Techniques</topic><topic>Cellular signal transduction</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - virology</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 1 - virology</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - virology</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>Epidemiology</topic><topic>Gene expression</topic><topic>Gene transfer</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>Health aspects</topic><topic>Health Promotion and Disease Prevention</topic><topic>Hemagglutinins</topic><topic>Hepatocytes</topic><topic>High fat diet</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Internal Medicine</topic><topic>Ligands</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Obesity - metabolism</topic><topic>Obesity - physiopathology</topic><topic>Open reading frames</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Preadipocytes</topic><topic>Properties</topic><topic>Protein Transport</topic><topic>Public Health</topic><topic>Rodents</topic><topic>scientific-correspondence</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Streptozocin</topic><topic>Transfection</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, I-S</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Kim, R-H</creatorcontrib><creatorcontrib>Ko, H L</creatorcontrib><creatorcontrib>Nam, J-H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International Journal of Obesity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, I-S</au><au>Park, S</au><au>Kim, R-H</au><au>Ko, H L</au><au>Nam, J-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes</atitle><jtitle>International Journal of Obesity</jtitle><stitle>Int J Obes</stitle><addtitle>Int J Obes (Lond)</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>41</volume><issue>10</issue><spage>1601</spage><epage>1605</epage><pages>1601-1605</pages><issn>0307-0565</issn><eissn>1476-5497</eissn><abstract>Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras–Akt signaling pathway, which bypasses PI3K–Akt-mediated insulin receptor signaling. E4orf1 , a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence ( ATS ) to the 5′ end of E4orf1 ( ATS–E4orf1 ). In vitro transfection of ATS–E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin ( HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS–E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS–E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS–E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS–E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28607454</pmid><doi>10.1038/ijo.2017.142</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-0565
ispartof International Journal of Obesity, 2017-10, Vol.41 (10), p.1601-1605
issn 0307-0565
1476-5497
language eng
recordid cdi_proquest_miscellaneous_1909232991
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 1-Phosphatidylinositol 3-kinase
13/95
38/109
631/80
64/60
692/308
Adenovirus E4 Proteins - genetics
Adenovirus E4 Proteins - metabolism
Adipocytes
Adipocytes - metabolism
Adipogenesis
AKT protein
Animal models
Animals
Blood
Bypasses
Cell Culture Techniques
Cellular signal transduction
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - virology
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - virology
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - virology
Diet, High-Fat
Disease Models, Animal
Epidemiology
Gene expression
Gene transfer
Genetic aspects
Glucose
Glucose Transporter Type 4 - metabolism
Health aspects
Health Promotion and Disease Prevention
Hemagglutinins
Hepatocytes
High fat diet
Insulin
Insulin - metabolism
Insulin resistance
Insulin Resistance - physiology
Internal Medicine
Ligands
Liver
Liver diseases
Male
Medicine
Medicine & Public Health
Metabolic Diseases
Mice
Obesity - metabolism
Obesity - physiopathology
Open reading frames
Phosphatidylinositol 3-Kinases - metabolism
Preadipocytes
Properties
Protein Transport
Public Health
Rodents
scientific-correspondence
Signal Transduction
Signaling
Streptozocin
Transfection
Translocation
title Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-sparing%20and%20fungible%20effects%20of%20E4orf1%20combined%20with%20an%20adipocyte-targeting%20sequence%20in%20mouse%20models%20of%20type%201%20and%20type%202%20diabetes&rft.jtitle=International%20Journal%20of%20Obesity&rft.au=Yoon,%20I-S&rft.date=2017-10-01&rft.volume=41&rft.issue=10&rft.spage=1601&rft.epage=1605&rft.pages=1601-1605&rft.issn=0307-0565&rft.eissn=1476-5497&rft_id=info:doi/10.1038/ijo.2017.142&rft_dat=%3Cgale_proqu%3EA507816557%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945758783&rft_id=info:pmid/28607454&rft_galeid=A507816557&rfr_iscdi=true