Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis
During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and i...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2017-07, Vol.23 (7), p.839-849 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | 7 |
container_start_page | 839 |
container_title | Nature medicine |
container_volume | 23 |
creator | Worthmann, Anna John, Clara Rühlemann, Malte C Baguhl, Miriam Heinsen, Femke-Anouska Schaltenberg, Nicola Heine, Markus Schlein, Christian Evangelakos, Ioannis Mineo, Chieko Fischer, Markus Dandri, Maura Kremoser, Claus Scheja, Ludger Franke, Andre Shaul, Philip W Heeren, Joerg |
description | During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation.
Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism. |
doi_str_mv | 10.1038/nm.4357 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908797131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498250586</galeid><sourcerecordid>A498250586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</originalsourceid><addsrcrecordid>eNqN0t1r3SAUAPAwNtaPjf0HQxis20PuNMYkPpbLPgqFwr7Ym3j1JLEYvVVTtv31M7Rbe8t9GD4o-vNwPJ6ieEHwimDavXPTqqasfVQcElY3JWnxj8d5jduu7DhrDoqjGC8xxhQz_rQ4qLoG1y2mh8Xvtbe6NE7PCjRS3l1DiMY75HukRm8hJgjeouTRxlhAUhkdkXFoMgpQHOUWIkojoGFOy17wG-On7JxG2-Ann_K51HKbzDUsMEx-AAfRxGfFk17aCM9v5-Pi24f3X9efyvOLj2fr0_NSNaRKJe97zTaSM4or0D2jddfiFnPVMCUVByl5pxnBUhHJpc57qqs5rqumbWgjFT0u3tzEzflczflBYjJRgbXSgZ-jIBx3LW8JJZm-ekAv_Rxczi4r0vKG1bS5U4O0IIzrfQpSLUHFac27imHWLarco5a3B2m9gz6Xc9ev9vg8NOS67r3wdudCNgl-pkHOMYqzL5__315837Wv79kRpE1j9HZOuS3iLjy5gfnXYwzQi20wkwy_BMFiaUvhJrG0ZZYvb-s6bybQ_9zfPrz7o5iP3ADhXuEfxPoDQDnnnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917965436</pqid></control><display><type>article</type><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</creator><creatorcontrib>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</creatorcontrib><description>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation.
Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.4357</identifier><identifier>PMID: 28604703</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38 ; 631/443/319/1557 ; 631/443/319/2723 ; 64/110 ; 64/60 ; 692/163/2743/393 ; 692/699/2743/2099 ; 82/1 ; 82/58 ; 82/80 ; Acids ; Adipocytes ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - metabolism ; Alanine Transaminase - metabolism ; Animals ; Aspartate Aminotransferases - metabolism ; ATP Binding Cassette Transporter, Subfamily B - genetics ; ATP-Binding Cassette Sub-Family B Member 4 ; Bacteria ; Bile ; Bile acids ; Bile Acids and Salts - metabolism ; Biomedicine ; Blotting, Western ; Calorimetry, Indirect ; Cancer Research ; Carbohydrates ; Case-Control Studies ; Cholesterol ; Cholesterol - metabolism ; Cold Temperature ; Conversion ; Cytochrome P-450 ; Cytochrome P450 ; Cytochrome P450 Family 7 - genetics ; Cytochrome P450 Family 7 - metabolism ; Digestive system ; Effectors ; Energy metabolism ; Excretion ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Gene Expression Profiling ; Health aspects ; Heat ; Humans ; Infectious Diseases ; Intestinal microflora ; Lipid metabolism ; Liver - metabolism ; Metabolic Diseases ; Metabolism ; Mice ; Mice, Knockout ; Microbiota ; Microbiota (Symbiotic organisms) ; Molecular Medicine ; Neurosciences ; Obesity ; Pharmacology ; Physiological aspects ; Plasma levels ; Receptors, LDL - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Ribosomal, 16S - genetics ; Rodents ; Steroid Hydroxylases - genetics ; Steroid Hydroxylases - metabolism ; Stomach ; Synthesis ; Thermogenesis ; Triglycerides</subject><ispartof>Nature medicine, 2017-07, Vol.23 (7), p.839-849</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</citedby><cites>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</cites><orcidid>0000-0003-1530-5811 ; 0000-0003-3652-6402 ; 0000-0002-5647-1034 ; 0000-0002-0685-0052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.4357$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.4357$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28604703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Worthmann, Anna</creatorcontrib><creatorcontrib>John, Clara</creatorcontrib><creatorcontrib>Rühlemann, Malte C</creatorcontrib><creatorcontrib>Baguhl, Miriam</creatorcontrib><creatorcontrib>Heinsen, Femke-Anouska</creatorcontrib><creatorcontrib>Schaltenberg, Nicola</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Schlein, Christian</creatorcontrib><creatorcontrib>Evangelakos, Ioannis</creatorcontrib><creatorcontrib>Mineo, Chieko</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Dandri, Maura</creatorcontrib><creatorcontrib>Kremoser, Claus</creatorcontrib><creatorcontrib>Scheja, Ludger</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Shaul, Philip W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation.
Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</description><subject>38</subject><subject>631/443/319/1557</subject><subject>631/443/319/2723</subject><subject>64/110</subject><subject>64/60</subject><subject>692/163/2743/393</subject><subject>692/699/2743/2099</subject><subject>82/1</subject><subject>82/58</subject><subject>82/80</subject><subject>Acids</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Alanine Transaminase - metabolism</subject><subject>Animals</subject><subject>Aspartate Aminotransferases - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily B - genetics</subject><subject>ATP-Binding Cassette Sub-Family B Member 4</subject><subject>Bacteria</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Calorimetry, Indirect</subject><subject>Cancer Research</subject><subject>Carbohydrates</subject><subject>Case-Control Studies</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cold Temperature</subject><subject>Conversion</subject><subject>Cytochrome P-450</subject><subject>Cytochrome P450</subject><subject>Cytochrome P450 Family 7 - genetics</subject><subject>Cytochrome P450 Family 7 - metabolism</subject><subject>Digestive system</subject><subject>Effectors</subject><subject>Energy metabolism</subject><subject>Excretion</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Gene Expression Profiling</subject><subject>Health aspects</subject><subject>Heat</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Intestinal microflora</subject><subject>Lipid metabolism</subject><subject>Liver - metabolism</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Plasma levels</subject><subject>Receptors, LDL - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Rodents</subject><subject>Steroid Hydroxylases - genetics</subject><subject>Steroid Hydroxylases - metabolism</subject><subject>Stomach</subject><subject>Synthesis</subject><subject>Thermogenesis</subject><subject>Triglycerides</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0t1r3SAUAPAwNtaPjf0HQxis20PuNMYkPpbLPgqFwr7Ym3j1JLEYvVVTtv31M7Rbe8t9GD4o-vNwPJ6ieEHwimDavXPTqqasfVQcElY3JWnxj8d5jduu7DhrDoqjGC8xxhQz_rQ4qLoG1y2mh8Xvtbe6NE7PCjRS3l1DiMY75HukRm8hJgjeouTRxlhAUhkdkXFoMgpQHOUWIkojoGFOy17wG-On7JxG2-Ann_K51HKbzDUsMEx-AAfRxGfFk17aCM9v5-Pi24f3X9efyvOLj2fr0_NSNaRKJe97zTaSM4or0D2jddfiFnPVMCUVByl5pxnBUhHJpc57qqs5rqumbWgjFT0u3tzEzflczflBYjJRgbXSgZ-jIBx3LW8JJZm-ekAv_Rxczi4r0vKG1bS5U4O0IIzrfQpSLUHFac27imHWLarco5a3B2m9gz6Xc9ev9vg8NOS67r3wdudCNgl-pkHOMYqzL5__315837Wv79kRpE1j9HZOuS3iLjy5gfnXYwzQi20wkwy_BMFiaUvhJrG0ZZYvb-s6bybQ_9zfPrz7o5iP3ADhXuEfxPoDQDnnnw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Worthmann, Anna</creator><creator>John, Clara</creator><creator>Rühlemann, Malte C</creator><creator>Baguhl, Miriam</creator><creator>Heinsen, Femke-Anouska</creator><creator>Schaltenberg, Nicola</creator><creator>Heine, Markus</creator><creator>Schlein, Christian</creator><creator>Evangelakos, Ioannis</creator><creator>Mineo, Chieko</creator><creator>Fischer, Markus</creator><creator>Dandri, Maura</creator><creator>Kremoser, Claus</creator><creator>Scheja, Ludger</creator><creator>Franke, Andre</creator><creator>Shaul, Philip W</creator><creator>Heeren, Joerg</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1530-5811</orcidid><orcidid>https://orcid.org/0000-0003-3652-6402</orcidid><orcidid>https://orcid.org/0000-0002-5647-1034</orcidid><orcidid>https://orcid.org/0000-0002-0685-0052</orcidid></search><sort><creationdate>20170701</creationdate><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><author>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>631/443/319/1557</topic><topic>631/443/319/2723</topic><topic>64/110</topic><topic>64/60</topic><topic>692/163/2743/393</topic><topic>692/699/2743/2099</topic><topic>82/1</topic><topic>82/58</topic><topic>82/80</topic><topic>Acids</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Alanine Transaminase - metabolism</topic><topic>Animals</topic><topic>Aspartate Aminotransferases - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily B - genetics</topic><topic>ATP-Binding Cassette Sub-Family B Member 4</topic><topic>Bacteria</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Calorimetry, Indirect</topic><topic>Cancer Research</topic><topic>Carbohydrates</topic><topic>Case-Control Studies</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cold Temperature</topic><topic>Conversion</topic><topic>Cytochrome P-450</topic><topic>Cytochrome P450</topic><topic>Cytochrome P450 Family 7 - genetics</topic><topic>Cytochrome P450 Family 7 - metabolism</topic><topic>Digestive system</topic><topic>Effectors</topic><topic>Energy metabolism</topic><topic>Excretion</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Gene Expression Profiling</topic><topic>Health aspects</topic><topic>Heat</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Intestinal microflora</topic><topic>Lipid metabolism</topic><topic>Liver - metabolism</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Plasma levels</topic><topic>Receptors, LDL - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Rodents</topic><topic>Steroid Hydroxylases - genetics</topic><topic>Steroid Hydroxylases - metabolism</topic><topic>Stomach</topic><topic>Synthesis</topic><topic>Thermogenesis</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worthmann, Anna</creatorcontrib><creatorcontrib>John, Clara</creatorcontrib><creatorcontrib>Rühlemann, Malte C</creatorcontrib><creatorcontrib>Baguhl, Miriam</creatorcontrib><creatorcontrib>Heinsen, Femke-Anouska</creatorcontrib><creatorcontrib>Schaltenberg, Nicola</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Schlein, Christian</creatorcontrib><creatorcontrib>Evangelakos, Ioannis</creatorcontrib><creatorcontrib>Mineo, Chieko</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Dandri, Maura</creatorcontrib><creatorcontrib>Kremoser, Claus</creatorcontrib><creatorcontrib>Scheja, Ludger</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Shaul, Philip W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worthmann, Anna</au><au>John, Clara</au><au>Rühlemann, Malte C</au><au>Baguhl, Miriam</au><au>Heinsen, Femke-Anouska</au><au>Schaltenberg, Nicola</au><au>Heine, Markus</au><au>Schlein, Christian</au><au>Evangelakos, Ioannis</au><au>Mineo, Chieko</au><au>Fischer, Markus</au><au>Dandri, Maura</au><au>Kremoser, Claus</au><au>Scheja, Ludger</au><au>Franke, Andre</au><au>Shaul, Philip W</au><au>Heeren, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>23</volume><issue>7</issue><spage>839</spage><epage>849</epage><pages>839-849</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation.
Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28604703</pmid><doi>10.1038/nm.4357</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1530-5811</orcidid><orcidid>https://orcid.org/0000-0003-3652-6402</orcidid><orcidid>https://orcid.org/0000-0002-5647-1034</orcidid><orcidid>https://orcid.org/0000-0002-0685-0052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2017-07, Vol.23 (7), p.839-849 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_1908797131 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 38 631/443/319/1557 631/443/319/2723 64/110 64/60 692/163/2743/393 692/699/2743/2099 82/1 82/58 82/80 Acids Adipocytes Adipose tissue Adipose tissue (brown) Adipose Tissue, Brown - metabolism Alanine Transaminase - metabolism Animals Aspartate Aminotransferases - metabolism ATP Binding Cassette Transporter, Subfamily B - genetics ATP-Binding Cassette Sub-Family B Member 4 Bacteria Bile Bile acids Bile Acids and Salts - metabolism Biomedicine Blotting, Western Calorimetry, Indirect Cancer Research Carbohydrates Case-Control Studies Cholesterol Cholesterol - metabolism Cold Temperature Conversion Cytochrome P-450 Cytochrome P450 Cytochrome P450 Family 7 - genetics Cytochrome P450 Family 7 - metabolism Digestive system Effectors Energy metabolism Excretion Gastrointestinal Microbiome - genetics Gastrointestinal tract Gene Expression Profiling Health aspects Heat Humans Infectious Diseases Intestinal microflora Lipid metabolism Liver - metabolism Metabolic Diseases Metabolism Mice Mice, Knockout Microbiota Microbiota (Symbiotic organisms) Molecular Medicine Neurosciences Obesity Pharmacology Physiological aspects Plasma levels Receptors, LDL - genetics Reverse Transcriptase Polymerase Chain Reaction RNA, Ribosomal, 16S - genetics Rodents Steroid Hydroxylases - genetics Steroid Hydroxylases - metabolism Stomach Synthesis Thermogenesis Triglycerides |
title | Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold-induced%20conversion%20of%20cholesterol%20to%20bile%20acids%20in%20mice%20shapes%20the%20gut%20microbiome%20and%20promotes%20adaptive%20thermogenesis&rft.jtitle=Nature%20medicine&rft.au=Worthmann,%20Anna&rft.date=2017-07-01&rft.volume=23&rft.issue=7&rft.spage=839&rft.epage=849&rft.pages=839-849&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.4357&rft_dat=%3Cgale_proqu%3EA498250586%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917965436&rft_id=info:pmid/28604703&rft_galeid=A498250586&rfr_iscdi=true |