Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis

During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2017-07, Vol.23 (7), p.839-849
Hauptverfasser: Worthmann, Anna, John, Clara, Rühlemann, Malte C, Baguhl, Miriam, Heinsen, Femke-Anouska, Schaltenberg, Nicola, Heine, Markus, Schlein, Christian, Evangelakos, Ioannis, Mineo, Chieko, Fischer, Markus, Dandri, Maura, Kremoser, Claus, Scheja, Ludger, Franke, Andre, Shaul, Philip W, Heeren, Joerg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 7
container_start_page 839
container_title Nature medicine
container_volume 23
creator Worthmann, Anna
John, Clara
Rühlemann, Malte C
Baguhl, Miriam
Heinsen, Femke-Anouska
Schaltenberg, Nicola
Heine, Markus
Schlein, Christian
Evangelakos, Ioannis
Mineo, Chieko
Fischer, Markus
Dandri, Maura
Kremoser, Claus
Scheja, Ludger
Franke, Andre
Shaul, Philip W
Heeren, Joerg
description During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.
doi_str_mv 10.1038/nm.4357
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908797131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498250586</galeid><sourcerecordid>A498250586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</originalsourceid><addsrcrecordid>eNqN0t1r3SAUAPAwNtaPjf0HQxis20PuNMYkPpbLPgqFwr7Ym3j1JLEYvVVTtv31M7Rbe8t9GD4o-vNwPJ6ieEHwimDavXPTqqasfVQcElY3JWnxj8d5jduu7DhrDoqjGC8xxhQz_rQ4qLoG1y2mh8Xvtbe6NE7PCjRS3l1DiMY75HukRm8hJgjeouTRxlhAUhkdkXFoMgpQHOUWIkojoGFOy17wG-On7JxG2-Ann_K51HKbzDUsMEx-AAfRxGfFk17aCM9v5-Pi24f3X9efyvOLj2fr0_NSNaRKJe97zTaSM4or0D2jddfiFnPVMCUVByl5pxnBUhHJpc57qqs5rqumbWgjFT0u3tzEzflczflBYjJRgbXSgZ-jIBx3LW8JJZm-ekAv_Rxczi4r0vKG1bS5U4O0IIzrfQpSLUHFac27imHWLarco5a3B2m9gz6Xc9ev9vg8NOS67r3wdudCNgl-pkHOMYqzL5__315837Wv79kRpE1j9HZOuS3iLjy5gfnXYwzQi20wkwy_BMFiaUvhJrG0ZZYvb-s6bybQ_9zfPrz7o5iP3ADhXuEfxPoDQDnnnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917965436</pqid></control><display><type>article</type><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</creator><creatorcontrib>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</creatorcontrib><description>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.4357</identifier><identifier>PMID: 28604703</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38 ; 631/443/319/1557 ; 631/443/319/2723 ; 64/110 ; 64/60 ; 692/163/2743/393 ; 692/699/2743/2099 ; 82/1 ; 82/58 ; 82/80 ; Acids ; Adipocytes ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - metabolism ; Alanine Transaminase - metabolism ; Animals ; Aspartate Aminotransferases - metabolism ; ATP Binding Cassette Transporter, Subfamily B - genetics ; ATP-Binding Cassette Sub-Family B Member 4 ; Bacteria ; Bile ; Bile acids ; Bile Acids and Salts - metabolism ; Biomedicine ; Blotting, Western ; Calorimetry, Indirect ; Cancer Research ; Carbohydrates ; Case-Control Studies ; Cholesterol ; Cholesterol - metabolism ; Cold Temperature ; Conversion ; Cytochrome P-450 ; Cytochrome P450 ; Cytochrome P450 Family 7 - genetics ; Cytochrome P450 Family 7 - metabolism ; Digestive system ; Effectors ; Energy metabolism ; Excretion ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Gene Expression Profiling ; Health aspects ; Heat ; Humans ; Infectious Diseases ; Intestinal microflora ; Lipid metabolism ; Liver - metabolism ; Metabolic Diseases ; Metabolism ; Mice ; Mice, Knockout ; Microbiota ; Microbiota (Symbiotic organisms) ; Molecular Medicine ; Neurosciences ; Obesity ; Pharmacology ; Physiological aspects ; Plasma levels ; Receptors, LDL - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Ribosomal, 16S - genetics ; Rodents ; Steroid Hydroxylases - genetics ; Steroid Hydroxylases - metabolism ; Stomach ; Synthesis ; Thermogenesis ; Triglycerides</subject><ispartof>Nature medicine, 2017-07, Vol.23 (7), p.839-849</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</citedby><cites>FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</cites><orcidid>0000-0003-1530-5811 ; 0000-0003-3652-6402 ; 0000-0002-5647-1034 ; 0000-0002-0685-0052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.4357$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.4357$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28604703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Worthmann, Anna</creatorcontrib><creatorcontrib>John, Clara</creatorcontrib><creatorcontrib>Rühlemann, Malte C</creatorcontrib><creatorcontrib>Baguhl, Miriam</creatorcontrib><creatorcontrib>Heinsen, Femke-Anouska</creatorcontrib><creatorcontrib>Schaltenberg, Nicola</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Schlein, Christian</creatorcontrib><creatorcontrib>Evangelakos, Ioannis</creatorcontrib><creatorcontrib>Mineo, Chieko</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Dandri, Maura</creatorcontrib><creatorcontrib>Kremoser, Claus</creatorcontrib><creatorcontrib>Scheja, Ludger</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Shaul, Philip W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</description><subject>38</subject><subject>631/443/319/1557</subject><subject>631/443/319/2723</subject><subject>64/110</subject><subject>64/60</subject><subject>692/163/2743/393</subject><subject>692/699/2743/2099</subject><subject>82/1</subject><subject>82/58</subject><subject>82/80</subject><subject>Acids</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Alanine Transaminase - metabolism</subject><subject>Animals</subject><subject>Aspartate Aminotransferases - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily B - genetics</subject><subject>ATP-Binding Cassette Sub-Family B Member 4</subject><subject>Bacteria</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Calorimetry, Indirect</subject><subject>Cancer Research</subject><subject>Carbohydrates</subject><subject>Case-Control Studies</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cold Temperature</subject><subject>Conversion</subject><subject>Cytochrome P-450</subject><subject>Cytochrome P450</subject><subject>Cytochrome P450 Family 7 - genetics</subject><subject>Cytochrome P450 Family 7 - metabolism</subject><subject>Digestive system</subject><subject>Effectors</subject><subject>Energy metabolism</subject><subject>Excretion</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Gene Expression Profiling</subject><subject>Health aspects</subject><subject>Heat</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Intestinal microflora</subject><subject>Lipid metabolism</subject><subject>Liver - metabolism</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Plasma levels</subject><subject>Receptors, LDL - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Rodents</subject><subject>Steroid Hydroxylases - genetics</subject><subject>Steroid Hydroxylases - metabolism</subject><subject>Stomach</subject><subject>Synthesis</subject><subject>Thermogenesis</subject><subject>Triglycerides</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0t1r3SAUAPAwNtaPjf0HQxis20PuNMYkPpbLPgqFwr7Ym3j1JLEYvVVTtv31M7Rbe8t9GD4o-vNwPJ6ieEHwimDavXPTqqasfVQcElY3JWnxj8d5jduu7DhrDoqjGC8xxhQz_rQ4qLoG1y2mh8Xvtbe6NE7PCjRS3l1DiMY75HukRm8hJgjeouTRxlhAUhkdkXFoMgpQHOUWIkojoGFOy17wG-On7JxG2-Ann_K51HKbzDUsMEx-AAfRxGfFk17aCM9v5-Pi24f3X9efyvOLj2fr0_NSNaRKJe97zTaSM4or0D2jddfiFnPVMCUVByl5pxnBUhHJpc57qqs5rqumbWgjFT0u3tzEzflczflBYjJRgbXSgZ-jIBx3LW8JJZm-ekAv_Rxczi4r0vKG1bS5U4O0IIzrfQpSLUHFac27imHWLarco5a3B2m9gz6Xc9ev9vg8NOS67r3wdudCNgl-pkHOMYqzL5__315837Wv79kRpE1j9HZOuS3iLjy5gfnXYwzQi20wkwy_BMFiaUvhJrG0ZZYvb-s6bybQ_9zfPrz7o5iP3ADhXuEfxPoDQDnnnw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Worthmann, Anna</creator><creator>John, Clara</creator><creator>Rühlemann, Malte C</creator><creator>Baguhl, Miriam</creator><creator>Heinsen, Femke-Anouska</creator><creator>Schaltenberg, Nicola</creator><creator>Heine, Markus</creator><creator>Schlein, Christian</creator><creator>Evangelakos, Ioannis</creator><creator>Mineo, Chieko</creator><creator>Fischer, Markus</creator><creator>Dandri, Maura</creator><creator>Kremoser, Claus</creator><creator>Scheja, Ludger</creator><creator>Franke, Andre</creator><creator>Shaul, Philip W</creator><creator>Heeren, Joerg</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1530-5811</orcidid><orcidid>https://orcid.org/0000-0003-3652-6402</orcidid><orcidid>https://orcid.org/0000-0002-5647-1034</orcidid><orcidid>https://orcid.org/0000-0002-0685-0052</orcidid></search><sort><creationdate>20170701</creationdate><title>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</title><author>Worthmann, Anna ; John, Clara ; Rühlemann, Malte C ; Baguhl, Miriam ; Heinsen, Femke-Anouska ; Schaltenberg, Nicola ; Heine, Markus ; Schlein, Christian ; Evangelakos, Ioannis ; Mineo, Chieko ; Fischer, Markus ; Dandri, Maura ; Kremoser, Claus ; Scheja, Ludger ; Franke, Andre ; Shaul, Philip W ; Heeren, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-9ffd5ba95302edf534870709c65cac9eaa98d510ac1a9adcacc84904267636ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>631/443/319/1557</topic><topic>631/443/319/2723</topic><topic>64/110</topic><topic>64/60</topic><topic>692/163/2743/393</topic><topic>692/699/2743/2099</topic><topic>82/1</topic><topic>82/58</topic><topic>82/80</topic><topic>Acids</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Alanine Transaminase - metabolism</topic><topic>Animals</topic><topic>Aspartate Aminotransferases - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily B - genetics</topic><topic>ATP-Binding Cassette Sub-Family B Member 4</topic><topic>Bacteria</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Calorimetry, Indirect</topic><topic>Cancer Research</topic><topic>Carbohydrates</topic><topic>Case-Control Studies</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cold Temperature</topic><topic>Conversion</topic><topic>Cytochrome P-450</topic><topic>Cytochrome P450</topic><topic>Cytochrome P450 Family 7 - genetics</topic><topic>Cytochrome P450 Family 7 - metabolism</topic><topic>Digestive system</topic><topic>Effectors</topic><topic>Energy metabolism</topic><topic>Excretion</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Gene Expression Profiling</topic><topic>Health aspects</topic><topic>Heat</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Intestinal microflora</topic><topic>Lipid metabolism</topic><topic>Liver - metabolism</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Plasma levels</topic><topic>Receptors, LDL - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Rodents</topic><topic>Steroid Hydroxylases - genetics</topic><topic>Steroid Hydroxylases - metabolism</topic><topic>Stomach</topic><topic>Synthesis</topic><topic>Thermogenesis</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worthmann, Anna</creatorcontrib><creatorcontrib>John, Clara</creatorcontrib><creatorcontrib>Rühlemann, Malte C</creatorcontrib><creatorcontrib>Baguhl, Miriam</creatorcontrib><creatorcontrib>Heinsen, Femke-Anouska</creatorcontrib><creatorcontrib>Schaltenberg, Nicola</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Schlein, Christian</creatorcontrib><creatorcontrib>Evangelakos, Ioannis</creatorcontrib><creatorcontrib>Mineo, Chieko</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Dandri, Maura</creatorcontrib><creatorcontrib>Kremoser, Claus</creatorcontrib><creatorcontrib>Scheja, Ludger</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Shaul, Philip W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worthmann, Anna</au><au>John, Clara</au><au>Rühlemann, Malte C</au><au>Baguhl, Miriam</au><au>Heinsen, Femke-Anouska</au><au>Schaltenberg, Nicola</au><au>Heine, Markus</au><au>Schlein, Christian</au><au>Evangelakos, Ioannis</au><au>Mineo, Chieko</au><au>Fischer, Markus</au><au>Dandri, Maura</au><au>Kremoser, Claus</au><au>Scheja, Ludger</au><au>Franke, Andre</au><au>Shaul, Philip W</au><au>Heeren, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>23</volume><issue>7</issue><spage>839</spage><epage>849</epage><pages>839-849</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>During cold stimulation, cholesterol is converted to bile acids in an alternative pathway. The bile acids then alter the microbiota, which in turn promotes more heat generation. Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28604703</pmid><doi>10.1038/nm.4357</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1530-5811</orcidid><orcidid>https://orcid.org/0000-0003-3652-6402</orcidid><orcidid>https://orcid.org/0000-0002-5647-1034</orcidid><orcidid>https://orcid.org/0000-0002-0685-0052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2017-07, Vol.23 (7), p.839-849
issn 1078-8956
1546-170X
language eng
recordid cdi_proquest_miscellaneous_1908797131
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 38
631/443/319/1557
631/443/319/2723
64/110
64/60
692/163/2743/393
692/699/2743/2099
82/1
82/58
82/80
Acids
Adipocytes
Adipose tissue
Adipose tissue (brown)
Adipose Tissue, Brown - metabolism
Alanine Transaminase - metabolism
Animals
Aspartate Aminotransferases - metabolism
ATP Binding Cassette Transporter, Subfamily B - genetics
ATP-Binding Cassette Sub-Family B Member 4
Bacteria
Bile
Bile acids
Bile Acids and Salts - metabolism
Biomedicine
Blotting, Western
Calorimetry, Indirect
Cancer Research
Carbohydrates
Case-Control Studies
Cholesterol
Cholesterol - metabolism
Cold Temperature
Conversion
Cytochrome P-450
Cytochrome P450
Cytochrome P450 Family 7 - genetics
Cytochrome P450 Family 7 - metabolism
Digestive system
Effectors
Energy metabolism
Excretion
Gastrointestinal Microbiome - genetics
Gastrointestinal tract
Gene Expression Profiling
Health aspects
Heat
Humans
Infectious Diseases
Intestinal microflora
Lipid metabolism
Liver - metabolism
Metabolic Diseases
Metabolism
Mice
Mice, Knockout
Microbiota
Microbiota (Symbiotic organisms)
Molecular Medicine
Neurosciences
Obesity
Pharmacology
Physiological aspects
Plasma levels
Receptors, LDL - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Ribosomal, 16S - genetics
Rodents
Steroid Hydroxylases - genetics
Steroid Hydroxylases - metabolism
Stomach
Synthesis
Thermogenesis
Triglycerides
title Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold-induced%20conversion%20of%20cholesterol%20to%20bile%20acids%20in%20mice%20shapes%20the%20gut%20microbiome%20and%20promotes%20adaptive%20thermogenesis&rft.jtitle=Nature%20medicine&rft.au=Worthmann,%20Anna&rft.date=2017-07-01&rft.volume=23&rft.issue=7&rft.spage=839&rft.epage=849&rft.pages=839-849&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.4357&rft_dat=%3Cgale_proqu%3EA498250586%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917965436&rft_id=info:pmid/28604703&rft_galeid=A498250586&rfr_iscdi=true