Nanodiamonds That Swim

Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-08, Vol.29 (30), p.n/a
Hauptverfasser: Kim, Ji Tae, Choudhury, Udit, Jeong, Hyeon‐Ho, Fischer, Peer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Kim, Ji Tae
Choudhury, Udit
Jeong, Hyeon‐Ho
Fischer, Peer
description Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms. Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.
doi_str_mv 10.1002/adma.201701024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908796472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926496062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqGwdkSVWFhSznYcx2PV8iUVGMhumfgiUuWjxI2q_nscpRSJhemk03OP3nsJmVCYUQB2Z2xlZgyoBAosOiEBFYyGEShxSgJQXIQqjpIRuXBuDQAqhvicjFgSgwAJAZm8mrqxhama2rpp-mm20_ddUV2Ss9yUDq8Oc0zSh_t08RSu3h6fF_NVmHHJozADJmSMaKjlCrI8Qis4cKUMoDQYUSsTv5Q58yGyOE84V4YxD6GgyPmY3A7aTdt8dei2uipchmVpamw6p6mCRPoHJPPozR903XRt7cN5yuv7z3pqNlBZ2zjXYq43bVGZdq8p6L4w3Remj4X5g-uDtvuo0B7xn4Y8oAZgV5S4_0en58uX-a_8G3T7c5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926496062</pqid></control><display><type>article</type><title>Nanodiamonds That Swim</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</creator><creatorcontrib>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</creatorcontrib><description>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms. Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701024</identifier><identifier>PMID: 28605070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Diamonds ; Electron paramagnetic resonance ; Electron spin ; Illumination ; Lattice vacancies ; Light ; Locomotion ; Magnetic fields ; Magnetic resonance ; Motion ; Nanodiamonds ; Nanostructure ; Nitrogen ; nitrogen vacancy center ; Self-assembly ; self‐thermophoretic micromotors ; Spin resonance ; Swimming ; Temperature ; Temperature gradients ; vector magnetometry</subject><ispartof>Advanced materials (Weinheim), 2017-08, Vol.29 (30), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</citedby><cites>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28605070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Choudhury, Udit</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Ho</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><title>Nanodiamonds That Swim</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms. Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</description><subject>Aqueous solutions</subject><subject>Diamonds</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Illumination</subject><subject>Lattice vacancies</subject><subject>Light</subject><subject>Locomotion</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Motion</subject><subject>Nanodiamonds</subject><subject>Nanostructure</subject><subject>Nitrogen</subject><subject>nitrogen vacancy center</subject><subject>Self-assembly</subject><subject>self‐thermophoretic micromotors</subject><subject>Spin resonance</subject><subject>Swimming</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>vector magnetometry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqGwdkSVWFhSznYcx2PV8iUVGMhumfgiUuWjxI2q_nscpRSJhemk03OP3nsJmVCYUQB2Z2xlZgyoBAosOiEBFYyGEShxSgJQXIQqjpIRuXBuDQAqhvicjFgSgwAJAZm8mrqxhama2rpp-mm20_ddUV2Ss9yUDq8Oc0zSh_t08RSu3h6fF_NVmHHJozADJmSMaKjlCrI8Qis4cKUMoDQYUSsTv5Q58yGyOE84V4YxD6GgyPmY3A7aTdt8dei2uipchmVpamw6p6mCRPoHJPPozR903XRt7cN5yuv7z3pqNlBZ2zjXYq43bVGZdq8p6L4w3Remj4X5g-uDtvuo0B7xn4Y8oAZgV5S4_0en58uX-a_8G3T7c5I</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kim, Ji Tae</creator><creator>Choudhury, Udit</creator><creator>Jeong, Hyeon‐Ho</creator><creator>Fischer, Peer</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Nanodiamonds That Swim</title><author>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aqueous solutions</topic><topic>Diamonds</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Illumination</topic><topic>Lattice vacancies</topic><topic>Light</topic><topic>Locomotion</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Motion</topic><topic>Nanodiamonds</topic><topic>Nanostructure</topic><topic>Nitrogen</topic><topic>nitrogen vacancy center</topic><topic>Self-assembly</topic><topic>self‐thermophoretic micromotors</topic><topic>Spin resonance</topic><topic>Swimming</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>vector magnetometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Choudhury, Udit</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Ho</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji Tae</au><au>Choudhury, Udit</au><au>Jeong, Hyeon‐Ho</au><au>Fischer, Peer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanodiamonds That Swim</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-08</date><risdate>2017</risdate><volume>29</volume><issue>30</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms. Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28605070</pmid><doi>10.1002/adma.201701024</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-08, Vol.29 (30), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1908796472
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aqueous solutions
Diamonds
Electron paramagnetic resonance
Electron spin
Illumination
Lattice vacancies
Light
Locomotion
Magnetic fields
Magnetic resonance
Motion
Nanodiamonds
Nanostructure
Nitrogen
nitrogen vacancy center
Self-assembly
self‐thermophoretic micromotors
Spin resonance
Swimming
Temperature
Temperature gradients
vector magnetometry
title Nanodiamonds That Swim
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanodiamonds%20That%20Swim&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Ji%20Tae&rft.date=2017-08&rft.volume=29&rft.issue=30&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701024&rft_dat=%3Cproquest_cross%3E1926496062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926496062&rft_id=info:pmid/28605070&rfr_iscdi=true