Nanodiamonds That Swim
Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crysta...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-08, Vol.29 (30), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Kim, Ji Tae Choudhury, Udit Jeong, Hyeon‐Ho Fischer, Peer |
description | Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.
Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium. |
doi_str_mv | 10.1002/adma.201701024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908796472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926496062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqGwdkSVWFhSznYcx2PV8iUVGMhumfgiUuWjxI2q_nscpRSJhemk03OP3nsJmVCYUQB2Z2xlZgyoBAosOiEBFYyGEShxSgJQXIQqjpIRuXBuDQAqhvicjFgSgwAJAZm8mrqxhama2rpp-mm20_ddUV2Ss9yUDq8Oc0zSh_t08RSu3h6fF_NVmHHJozADJmSMaKjlCrI8Qis4cKUMoDQYUSsTv5Q58yGyOE84V4YxD6GgyPmY3A7aTdt8dei2uipchmVpamw6p6mCRPoHJPPozR903XRt7cN5yuv7z3pqNlBZ2zjXYq43bVGZdq8p6L4w3Remj4X5g-uDtvuo0B7xn4Y8oAZgV5S4_0en58uX-a_8G3T7c5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926496062</pqid></control><display><type>article</type><title>Nanodiamonds That Swim</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</creator><creatorcontrib>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</creatorcontrib><description>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.
Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701024</identifier><identifier>PMID: 28605070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Diamonds ; Electron paramagnetic resonance ; Electron spin ; Illumination ; Lattice vacancies ; Light ; Locomotion ; Magnetic fields ; Magnetic resonance ; Motion ; Nanodiamonds ; Nanostructure ; Nitrogen ; nitrogen vacancy center ; Self-assembly ; self‐thermophoretic micromotors ; Spin resonance ; Swimming ; Temperature ; Temperature gradients ; vector magnetometry</subject><ispartof>Advanced materials (Weinheim), 2017-08, Vol.29 (30), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</citedby><cites>FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28605070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Choudhury, Udit</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Ho</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><title>Nanodiamonds That Swim</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.
Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</description><subject>Aqueous solutions</subject><subject>Diamonds</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Illumination</subject><subject>Lattice vacancies</subject><subject>Light</subject><subject>Locomotion</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Motion</subject><subject>Nanodiamonds</subject><subject>Nanostructure</subject><subject>Nitrogen</subject><subject>nitrogen vacancy center</subject><subject>Self-assembly</subject><subject>self‐thermophoretic micromotors</subject><subject>Spin resonance</subject><subject>Swimming</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>vector magnetometry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqGwdkSVWFhSznYcx2PV8iUVGMhumfgiUuWjxI2q_nscpRSJhemk03OP3nsJmVCYUQB2Z2xlZgyoBAosOiEBFYyGEShxSgJQXIQqjpIRuXBuDQAqhvicjFgSgwAJAZm8mrqxhama2rpp-mm20_ddUV2Ss9yUDq8Oc0zSh_t08RSu3h6fF_NVmHHJozADJmSMaKjlCrI8Qis4cKUMoDQYUSsTv5Q58yGyOE84V4YxD6GgyPmY3A7aTdt8dei2uipchmVpamw6p6mCRPoHJPPozR903XRt7cN5yuv7z3pqNlBZ2zjXYq43bVGZdq8p6L4w3Remj4X5g-uDtvuo0B7xn4Y8oAZgV5S4_0en58uX-a_8G3T7c5I</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kim, Ji Tae</creator><creator>Choudhury, Udit</creator><creator>Jeong, Hyeon‐Ho</creator><creator>Fischer, Peer</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Nanodiamonds That Swim</title><author>Kim, Ji Tae ; Choudhury, Udit ; Jeong, Hyeon‐Ho ; Fischer, Peer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-c02576eea1d390cf4ed530399a0e7ae41d78f4e7f2648c6f8339a22d53e51e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aqueous solutions</topic><topic>Diamonds</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Illumination</topic><topic>Lattice vacancies</topic><topic>Light</topic><topic>Locomotion</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Motion</topic><topic>Nanodiamonds</topic><topic>Nanostructure</topic><topic>Nitrogen</topic><topic>nitrogen vacancy center</topic><topic>Self-assembly</topic><topic>self‐thermophoretic micromotors</topic><topic>Spin resonance</topic><topic>Swimming</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>vector magnetometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Choudhury, Udit</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Ho</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji Tae</au><au>Choudhury, Udit</au><au>Jeong, Hyeon‐Ho</au><au>Fischer, Peer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanodiamonds That Swim</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-08</date><risdate>2017</risdate><volume>29</volume><issue>30</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.
Nanodiamond swimmers that self‐propel by thermophoresis are reported. Their precise locomotion patterns—from translational to rotational motion—can be used to control the spatial position of nitrogen vacancy fluorescence, achieving self‐driven vector magnetometry in a fluidic medium.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28605070</pmid><doi>10.1002/adma.201701024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-08, Vol.29 (30), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1908796472 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aqueous solutions Diamonds Electron paramagnetic resonance Electron spin Illumination Lattice vacancies Light Locomotion Magnetic fields Magnetic resonance Motion Nanodiamonds Nanostructure Nitrogen nitrogen vacancy center Self-assembly self‐thermophoretic micromotors Spin resonance Swimming Temperature Temperature gradients vector magnetometry |
title | Nanodiamonds That Swim |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanodiamonds%20That%20Swim&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Ji%20Tae&rft.date=2017-08&rft.volume=29&rft.issue=30&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701024&rft_dat=%3Cproquest_cross%3E1926496062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926496062&rft_id=info:pmid/28605070&rfr_iscdi=true |