Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation

Although the Apiaceae herb family has been traditionally used for the management of type 2 diabetes, its molecular mechanism has not been clarified. Coumarin derivatives, which are abundant in plants of the Apiaceae family, were evaluated for their effects on adipogenesis. We found that suksdorfin s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids 2017-07, Vol.52 (7), p.657-664
Hauptverfasser: Iwase, Mari, Yamamoto, Takayuki, Nishimura, Kanako, Takahashi, Haruya, Mohri, Shinsuke, Li, Yongjia, Jheng, Huei-Fen, Nomura, Wataru, Takahashi, Nobuyuki, Kim, Chu-Sook, Yu, Rina, Taniguchi, Masahiko, Baba, Kimiye, Murakami, Shigeru, Kawada, Teruo, Goto, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 7
container_start_page 657
container_title Lipids
container_volume 52
creator Iwase, Mari
Yamamoto, Takayuki
Nishimura, Kanako
Takahashi, Haruya
Mohri, Shinsuke
Li, Yongjia
Jheng, Huei-Fen
Nomura, Wataru
Takahashi, Nobuyuki
Kim, Chu-Sook
Yu, Rina
Taniguchi, Masahiko
Baba, Kimiye
Murakami, Shigeru
Kawada, Teruo
Goto, Tsuyoshi
description Although the Apiaceae herb family has been traditionally used for the management of type 2 diabetes, its molecular mechanism has not been clarified. Coumarin derivatives, which are abundant in plants of the Apiaceae family, were evaluated for their effects on adipogenesis. We found that suksdorfin significantly promoted adipocyte differentiation and enhanced production of adiponectin, an anti-diabetic adipokine. We also demonstrated that suksdorfin activates peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. Furthermore, we showed metabolic disorders in obese diabetic KK-A y mice were attenuated by suksdorfin feeding. Suksdorfin intake induced adipocyte miniaturization and increased expression levels of PPARγ target genes related to adipocyte differentiation. These results indicated that suksdorfin induces adipogenesis in white adipose tissue (WAT) via the activation of PPARγ, leading to improvement of obesity-induced metabolic disorders. Therefore, suksdorfin-mediated amelioration of WAT dysfunctions might be responsible for the anti-diabetic effects of traditional herbal medicine therapy with Apiaceae .
doi_str_mv 10.1007/s11745-017-4269-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908795312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908795312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3927-6c89858a1f95ae7ce299c6175b530fdb8e2779fa7529f0d375971038360ee16f3</originalsourceid><addsrcrecordid>eNqFkM-O0zAQhy0EYsvCA3BBPnIJeJw6jo_V7rJUKqLiz9lynDHyksTFdor6XLwHz4RLFo5wGo3m9_s0-gh5DuwVMCZfJwC5FhUDWa15oyr5gKxAiLZSNZMPyYoxvi4XBhfkSUp3ZYW1Eo_JBW8bBkqIFckf56-pD9H5ie5jGEPGRDe9PwR7ykivvXMYccreZB8maqaebsdDDMdzrJtCHM3gsy9bAdwOsw0J6TvMpguDTyM9ekP3-82Hnz_oxmZ__I15Sh45MyR8dj8vyec3N5-u3la797fbq82usrXismpsq1rRGnBKGJQWuVK2ASk6UTPXdy1yKZUzUnDlWF9LoSSwuq0bhgiNqy_Jy4VbHv42Y8p69MniMJgJw5w0KNZKJWrgJQpL1MaQUkSnD9GPJp40MH2WrRfZusjWZ9lals6Le_zcjdj_bfyxWwJyCXz3A57-T9S77f6aNeKM5kszldL0BaO-C3Ociqx__PMLEXKcFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908795312</pqid></control><display><type>article</type><title>Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>SpringerLink Journals</source><creator>Iwase, Mari ; Yamamoto, Takayuki ; Nishimura, Kanako ; Takahashi, Haruya ; Mohri, Shinsuke ; Li, Yongjia ; Jheng, Huei-Fen ; Nomura, Wataru ; Takahashi, Nobuyuki ; Kim, Chu-Sook ; Yu, Rina ; Taniguchi, Masahiko ; Baba, Kimiye ; Murakami, Shigeru ; Kawada, Teruo ; Goto, Tsuyoshi</creator><creatorcontrib>Iwase, Mari ; Yamamoto, Takayuki ; Nishimura, Kanako ; Takahashi, Haruya ; Mohri, Shinsuke ; Li, Yongjia ; Jheng, Huei-Fen ; Nomura, Wataru ; Takahashi, Nobuyuki ; Kim, Chu-Sook ; Yu, Rina ; Taniguchi, Masahiko ; Baba, Kimiye ; Murakami, Shigeru ; Kawada, Teruo ; Goto, Tsuyoshi</creatorcontrib><description>Although the Apiaceae herb family has been traditionally used for the management of type 2 diabetes, its molecular mechanism has not been clarified. Coumarin derivatives, which are abundant in plants of the Apiaceae family, were evaluated for their effects on adipogenesis. We found that suksdorfin significantly promoted adipocyte differentiation and enhanced production of adiponectin, an anti-diabetic adipokine. We also demonstrated that suksdorfin activates peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. Furthermore, we showed metabolic disorders in obese diabetic KK-A y mice were attenuated by suksdorfin feeding. Suksdorfin intake induced adipocyte miniaturization and increased expression levels of PPARγ target genes related to adipocyte differentiation. These results indicated that suksdorfin induces adipogenesis in white adipose tissue (WAT) via the activation of PPARγ, leading to improvement of obesity-induced metabolic disorders. Therefore, suksdorfin-mediated amelioration of WAT dysfunctions might be responsible for the anti-diabetic effects of traditional herbal medicine therapy with Apiaceae .</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-017-4269-7</identifier><identifier>PMID: 28601955</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3T3-L1 Cells ; Adipocyte differentiation ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Adiponectin - metabolism ; Animals ; Apiaceae - chemistry ; Biomedical and Life Sciences ; Cell Differentiation - drug effects ; Coumarin ; Coumarins - administration &amp; dosage ; Coumarins - pharmacology ; Enzyme Activation - drug effects ; Gene Expression Regulation, Enzymologic - drug effects ; Glucose metabolism ; Glucose Metabolism Disorders - drug therapy ; Glucose Metabolism Disorders - enzymology ; Life Sciences ; Lipidology ; Medical Biochemistry ; Medicinal Chemistry ; Mice ; Mice, Obese ; Microbial Genetics and Genomics ; Neurochemistry ; Nutrition ; PPAR gamma - metabolism ; PPARγ ; Rapid Communication ; Signal Transduction - drug effects</subject><ispartof>Lipids, 2017-07, Vol.52 (7), p.657-664</ispartof><rights>AOCS 2017</rights><rights>2017 American Oil Chemists' Society (AOCS)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3927-6c89858a1f95ae7ce299c6175b530fdb8e2779fa7529f0d375971038360ee16f3</citedby><cites>FETCH-LOGICAL-c3927-6c89858a1f95ae7ce299c6175b530fdb8e2779fa7529f0d375971038360ee16f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11745-017-4269-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11745-017-4269-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,41464,42533,45550,45551,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28601955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwase, Mari</creatorcontrib><creatorcontrib>Yamamoto, Takayuki</creatorcontrib><creatorcontrib>Nishimura, Kanako</creatorcontrib><creatorcontrib>Takahashi, Haruya</creatorcontrib><creatorcontrib>Mohri, Shinsuke</creatorcontrib><creatorcontrib>Li, Yongjia</creatorcontrib><creatorcontrib>Jheng, Huei-Fen</creatorcontrib><creatorcontrib>Nomura, Wataru</creatorcontrib><creatorcontrib>Takahashi, Nobuyuki</creatorcontrib><creatorcontrib>Kim, Chu-Sook</creatorcontrib><creatorcontrib>Yu, Rina</creatorcontrib><creatorcontrib>Taniguchi, Masahiko</creatorcontrib><creatorcontrib>Baba, Kimiye</creatorcontrib><creatorcontrib>Murakami, Shigeru</creatorcontrib><creatorcontrib>Kawada, Teruo</creatorcontrib><creatorcontrib>Goto, Tsuyoshi</creatorcontrib><title>Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation</title><title>Lipids</title><addtitle>Lipids</addtitle><addtitle>Lipids</addtitle><description>Although the Apiaceae herb family has been traditionally used for the management of type 2 diabetes, its molecular mechanism has not been clarified. Coumarin derivatives, which are abundant in plants of the Apiaceae family, were evaluated for their effects on adipogenesis. We found that suksdorfin significantly promoted adipocyte differentiation and enhanced production of adiponectin, an anti-diabetic adipokine. We also demonstrated that suksdorfin activates peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. Furthermore, we showed metabolic disorders in obese diabetic KK-A y mice were attenuated by suksdorfin feeding. Suksdorfin intake induced adipocyte miniaturization and increased expression levels of PPARγ target genes related to adipocyte differentiation. These results indicated that suksdorfin induces adipogenesis in white adipose tissue (WAT) via the activation of PPARγ, leading to improvement of obesity-induced metabolic disorders. Therefore, suksdorfin-mediated amelioration of WAT dysfunctions might be responsible for the anti-diabetic effects of traditional herbal medicine therapy with Apiaceae .</description><subject>3T3-L1 Cells</subject><subject>Adipocyte differentiation</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Adiponectin - metabolism</subject><subject>Animals</subject><subject>Apiaceae - chemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Differentiation - drug effects</subject><subject>Coumarin</subject><subject>Coumarins - administration &amp; dosage</subject><subject>Coumarins - pharmacology</subject><subject>Enzyme Activation - drug effects</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Glucose metabolism</subject><subject>Glucose Metabolism Disorders - drug therapy</subject><subject>Glucose Metabolism Disorders - enzymology</subject><subject>Life Sciences</subject><subject>Lipidology</subject><subject>Medical Biochemistry</subject><subject>Medicinal Chemistry</subject><subject>Mice</subject><subject>Mice, Obese</subject><subject>Microbial Genetics and Genomics</subject><subject>Neurochemistry</subject><subject>Nutrition</subject><subject>PPAR gamma - metabolism</subject><subject>PPARγ</subject><subject>Rapid Communication</subject><subject>Signal Transduction - drug effects</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM-O0zAQhy0EYsvCA3BBPnIJeJw6jo_V7rJUKqLiz9lynDHyksTFdor6XLwHz4RLFo5wGo3m9_s0-gh5DuwVMCZfJwC5FhUDWa15oyr5gKxAiLZSNZMPyYoxvi4XBhfkSUp3ZYW1Eo_JBW8bBkqIFckf56-pD9H5ie5jGEPGRDe9PwR7ykivvXMYccreZB8maqaebsdDDMdzrJtCHM3gsy9bAdwOsw0J6TvMpguDTyM9ekP3-82Hnz_oxmZ__I15Sh45MyR8dj8vyec3N5-u3la797fbq82usrXismpsq1rRGnBKGJQWuVK2ASk6UTPXdy1yKZUzUnDlWF9LoSSwuq0bhgiNqy_Jy4VbHv42Y8p69MniMJgJw5w0KNZKJWrgJQpL1MaQUkSnD9GPJp40MH2WrRfZusjWZ9lals6Le_zcjdj_bfyxWwJyCXz3A57-T9S77f6aNeKM5kszldL0BaO-C3Ociqx__PMLEXKcFQ</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Iwase, Mari</creator><creator>Yamamoto, Takayuki</creator><creator>Nishimura, Kanako</creator><creator>Takahashi, Haruya</creator><creator>Mohri, Shinsuke</creator><creator>Li, Yongjia</creator><creator>Jheng, Huei-Fen</creator><creator>Nomura, Wataru</creator><creator>Takahashi, Nobuyuki</creator><creator>Kim, Chu-Sook</creator><creator>Yu, Rina</creator><creator>Taniguchi, Masahiko</creator><creator>Baba, Kimiye</creator><creator>Murakami, Shigeru</creator><creator>Kawada, Teruo</creator><creator>Goto, Tsuyoshi</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation</title><author>Iwase, Mari ; Yamamoto, Takayuki ; Nishimura, Kanako ; Takahashi, Haruya ; Mohri, Shinsuke ; Li, Yongjia ; Jheng, Huei-Fen ; Nomura, Wataru ; Takahashi, Nobuyuki ; Kim, Chu-Sook ; Yu, Rina ; Taniguchi, Masahiko ; Baba, Kimiye ; Murakami, Shigeru ; Kawada, Teruo ; Goto, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3927-6c89858a1f95ae7ce299c6175b530fdb8e2779fa7529f0d375971038360ee16f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3T3-L1 Cells</topic><topic>Adipocyte differentiation</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Adiponectin - metabolism</topic><topic>Animals</topic><topic>Apiaceae - chemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Differentiation - drug effects</topic><topic>Coumarin</topic><topic>Coumarins - administration &amp; dosage</topic><topic>Coumarins - pharmacology</topic><topic>Enzyme Activation - drug effects</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Glucose metabolism</topic><topic>Glucose Metabolism Disorders - drug therapy</topic><topic>Glucose Metabolism Disorders - enzymology</topic><topic>Life Sciences</topic><topic>Lipidology</topic><topic>Medical Biochemistry</topic><topic>Medicinal Chemistry</topic><topic>Mice</topic><topic>Mice, Obese</topic><topic>Microbial Genetics and Genomics</topic><topic>Neurochemistry</topic><topic>Nutrition</topic><topic>PPAR gamma - metabolism</topic><topic>PPARγ</topic><topic>Rapid Communication</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwase, Mari</creatorcontrib><creatorcontrib>Yamamoto, Takayuki</creatorcontrib><creatorcontrib>Nishimura, Kanako</creatorcontrib><creatorcontrib>Takahashi, Haruya</creatorcontrib><creatorcontrib>Mohri, Shinsuke</creatorcontrib><creatorcontrib>Li, Yongjia</creatorcontrib><creatorcontrib>Jheng, Huei-Fen</creatorcontrib><creatorcontrib>Nomura, Wataru</creatorcontrib><creatorcontrib>Takahashi, Nobuyuki</creatorcontrib><creatorcontrib>Kim, Chu-Sook</creatorcontrib><creatorcontrib>Yu, Rina</creatorcontrib><creatorcontrib>Taniguchi, Masahiko</creatorcontrib><creatorcontrib>Baba, Kimiye</creatorcontrib><creatorcontrib>Murakami, Shigeru</creatorcontrib><creatorcontrib>Kawada, Teruo</creatorcontrib><creatorcontrib>Goto, Tsuyoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwase, Mari</au><au>Yamamoto, Takayuki</au><au>Nishimura, Kanako</au><au>Takahashi, Haruya</au><au>Mohri, Shinsuke</au><au>Li, Yongjia</au><au>Jheng, Huei-Fen</au><au>Nomura, Wataru</au><au>Takahashi, Nobuyuki</au><au>Kim, Chu-Sook</au><au>Yu, Rina</au><au>Taniguchi, Masahiko</au><au>Baba, Kimiye</au><au>Murakami, Shigeru</au><au>Kawada, Teruo</au><au>Goto, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation</atitle><jtitle>Lipids</jtitle><stitle>Lipids</stitle><addtitle>Lipids</addtitle><date>2017-07</date><risdate>2017</risdate><volume>52</volume><issue>7</issue><spage>657</spage><epage>664</epage><pages>657-664</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Although the Apiaceae herb family has been traditionally used for the management of type 2 diabetes, its molecular mechanism has not been clarified. Coumarin derivatives, which are abundant in plants of the Apiaceae family, were evaluated for their effects on adipogenesis. We found that suksdorfin significantly promoted adipocyte differentiation and enhanced production of adiponectin, an anti-diabetic adipokine. We also demonstrated that suksdorfin activates peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. Furthermore, we showed metabolic disorders in obese diabetic KK-A y mice were attenuated by suksdorfin feeding. Suksdorfin intake induced adipocyte miniaturization and increased expression levels of PPARγ target genes related to adipocyte differentiation. These results indicated that suksdorfin induces adipogenesis in white adipose tissue (WAT) via the activation of PPARγ, leading to improvement of obesity-induced metabolic disorders. Therefore, suksdorfin-mediated amelioration of WAT dysfunctions might be responsible for the anti-diabetic effects of traditional herbal medicine therapy with Apiaceae .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28601955</pmid><doi>10.1007/s11745-017-4269-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-4201
ispartof Lipids, 2017-07, Vol.52 (7), p.657-664
issn 0024-4201
1558-9307
language eng
recordid cdi_proquest_miscellaneous_1908795312
source MEDLINE; Wiley Online Library Journals Frontfile Complete; SpringerLink Journals
subjects 3T3-L1 Cells
Adipocyte differentiation
Adipocytes - cytology
Adipocytes - drug effects
Adipocytes - metabolism
Adiponectin - metabolism
Animals
Apiaceae - chemistry
Biomedical and Life Sciences
Cell Differentiation - drug effects
Coumarin
Coumarins - administration & dosage
Coumarins - pharmacology
Enzyme Activation - drug effects
Gene Expression Regulation, Enzymologic - drug effects
Glucose metabolism
Glucose Metabolism Disorders - drug therapy
Glucose Metabolism Disorders - enzymology
Life Sciences
Lipidology
Medical Biochemistry
Medicinal Chemistry
Mice
Mice, Obese
Microbial Genetics and Genomics
Neurochemistry
Nutrition
PPAR gamma - metabolism
PPARγ
Rapid Communication
Signal Transduction - drug effects
title Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARγ Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suksdorfin%20Promotes%20Adipocyte%20Differentiation%20and%20Improves%20Abnormalities%20in%20Glucose%20Metabolism%20via%20PPAR%CE%B3%20Activation&rft.jtitle=Lipids&rft.au=Iwase,%20Mari&rft.date=2017-07&rft.volume=52&rft.issue=7&rft.spage=657&rft.epage=664&rft.pages=657-664&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-017-4269-7&rft_dat=%3Cproquest_cross%3E1908795312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908795312&rft_id=info:pmid/28601955&rfr_iscdi=true