Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries
A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-06, Vol.9 (25), p.21267-21275 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21275 |
---|---|
container_issue | 25 |
container_start_page | 21267 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Wu, Zhen-Guo Li, Jun-Tao Zhong, Yan-Jun Guo, Xiao-Dong Huang, Ling Zhong, Ben-He Agyeman, Daniel-Adjei Lim, Jin-Myoung Kim, Du-ho Cho, Maeng-hyo Kang, Yong-Mook |
description | A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance. |
doi_str_mv | 10.1021/acsami.7b04338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1907322609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907322609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVJyVdz7bHoGAreyJKtlY_Jsm0CW1rY7dmMpXGtYEuJJFP2H-RnV2E3uXUuMzDPvDAPIZ9LtigZL29AR5jsYtmxSgj1gZyXTVUVitf85H2uqjNyEeMjY1JwVp-SM67qpiolPycvP1xxBxENXUEavEH616aBbvcOwx9MVtMN7DGgKXazczjS-30XrKHbFGad5oCRgjN0N6ANdO0GcDpnrUfUKXg94GQ1jPQXht6H6XVJraNbb-w80Qfv6B2khMFi_EQ-9jBGvDr2S_L723q3ui82P78_rG43BQjBUmFUL5tK99z0vOc1U7kkE7wrO9XoZSeBg5AASoNQvVEAcolc1hllInPiklwfcp-Cf54xpnayUeM4gkM_x7Zs2FJwLlmT0cUB1cHHGLBvn4KdIOzbkrWv9tuD_fZoPx98OWbP3YTmHX_TnYGvByAfto9-Di6_-r-0fwQqkJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907322609</pqid></control><display><type>article</type><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><source>American Chemical Society Journals</source><creator>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</creator><creatorcontrib>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</creatorcontrib><description>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b04338</identifier><identifier>PMID: 28594162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2017-06, Vol.9 (25), p.21267-21275</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</citedby><cites>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</cites><orcidid>0000-0002-9650-6385 ; 0000-0002-8153-2169 ; 0000-0003-1092-5974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b04338$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b04338$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28594162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><creatorcontrib>Zhong, Yan-Jun</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhong, Ben-He</creatorcontrib><creatorcontrib>Agyeman, Daniel-Adjei</creatorcontrib><creatorcontrib>Lim, Jin-Myoung</creatorcontrib><creatorcontrib>Kim, Du-ho</creatorcontrib><creatorcontrib>Cho, Maeng-hyo</creatorcontrib><creatorcontrib>Kang, Yong-Mook</creatorcontrib><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVJyVdz7bHoGAreyJKtlY_Jsm0CW1rY7dmMpXGtYEuJJFP2H-RnV2E3uXUuMzDPvDAPIZ9LtigZL29AR5jsYtmxSgj1gZyXTVUVitf85H2uqjNyEeMjY1JwVp-SM67qpiolPycvP1xxBxENXUEavEH616aBbvcOwx9MVtMN7DGgKXazczjS-30XrKHbFGad5oCRgjN0N6ANdO0GcDpnrUfUKXg94GQ1jPQXht6H6XVJraNbb-w80Qfv6B2khMFi_EQ-9jBGvDr2S_L723q3ui82P78_rG43BQjBUmFUL5tK99z0vOc1U7kkE7wrO9XoZSeBg5AASoNQvVEAcolc1hllInPiklwfcp-Cf54xpnayUeM4gkM_x7Zs2FJwLlmT0cUB1cHHGLBvn4KdIOzbkrWv9tuD_fZoPx98OWbP3YTmHX_TnYGvByAfto9-Di6_-r-0fwQqkJ4</recordid><startdate>20170628</startdate><enddate>20170628</enddate><creator>Wu, Zhen-Guo</creator><creator>Li, Jun-Tao</creator><creator>Zhong, Yan-Jun</creator><creator>Guo, Xiao-Dong</creator><creator>Huang, Ling</creator><creator>Zhong, Ben-He</creator><creator>Agyeman, Daniel-Adjei</creator><creator>Lim, Jin-Myoung</creator><creator>Kim, Du-ho</creator><creator>Cho, Maeng-hyo</creator><creator>Kang, Yong-Mook</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-1092-5974</orcidid></search><sort><creationdate>20170628</creationdate><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><author>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><creatorcontrib>Zhong, Yan-Jun</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhong, Ben-He</creatorcontrib><creatorcontrib>Agyeman, Daniel-Adjei</creatorcontrib><creatorcontrib>Lim, Jin-Myoung</creatorcontrib><creatorcontrib>Kim, Du-ho</creatorcontrib><creatorcontrib>Cho, Maeng-hyo</creatorcontrib><creatorcontrib>Kang, Yong-Mook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhen-Guo</au><au>Li, Jun-Tao</au><au>Zhong, Yan-Jun</au><au>Guo, Xiao-Dong</au><au>Huang, Ling</au><au>Zhong, Ben-He</au><au>Agyeman, Daniel-Adjei</au><au>Lim, Jin-Myoung</au><au>Kim, Du-ho</au><au>Cho, Maeng-hyo</au><au>Kang, Yong-Mook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-28</date><risdate>2017</risdate><volume>9</volume><issue>25</issue><spage>21267</spage><epage>21275</epage><pages>21267-21275</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28594162</pmid><doi>10.1021/acsami.7b04338</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-1092-5974</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-06, Vol.9 (25), p.21267-21275 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1907322609 |
source | American Chemical Society Journals |
title | Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn-Based%20Cathode%20with%20Synergetic%20Layered-Tunnel%20Hybrid%20Structures%20and%20Their%20Enhanced%20Electrochemical%20Performance%20in%20Sodium%20Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Zhen-Guo&rft.date=2017-06-28&rft.volume=9&rft.issue=25&rft.spage=21267&rft.epage=21275&rft.pages=21267-21275&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b04338&rft_dat=%3Cproquest_cross%3E1907322609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907322609&rft_id=info:pmid/28594162&rfr_iscdi=true |