Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries

A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-06, Vol.9 (25), p.21267-21275
Hauptverfasser: Wu, Zhen-Guo, Li, Jun-Tao, Zhong, Yan-Jun, Guo, Xiao-Dong, Huang, Ling, Zhong, Ben-He, Agyeman, Daniel-Adjei, Lim, Jin-Myoung, Kim, Du-ho, Cho, Maeng-hyo, Kang, Yong-Mook
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21275
container_issue 25
container_start_page 21267
container_title ACS applied materials & interfaces
container_volume 9
creator Wu, Zhen-Guo
Li, Jun-Tao
Zhong, Yan-Jun
Guo, Xiao-Dong
Huang, Ling
Zhong, Ben-He
Agyeman, Daniel-Adjei
Lim, Jin-Myoung
Kim, Du-ho
Cho, Maeng-hyo
Kang, Yong-Mook
description A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.
doi_str_mv 10.1021/acsami.7b04338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1907322609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907322609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVJyVdz7bHoGAreyJKtlY_Jsm0CW1rY7dmMpXGtYEuJJFP2H-RnV2E3uXUuMzDPvDAPIZ9LtigZL29AR5jsYtmxSgj1gZyXTVUVitf85H2uqjNyEeMjY1JwVp-SM67qpiolPycvP1xxBxENXUEavEH616aBbvcOwx9MVtMN7DGgKXazczjS-30XrKHbFGad5oCRgjN0N6ANdO0GcDpnrUfUKXg94GQ1jPQXht6H6XVJraNbb-w80Qfv6B2khMFi_EQ-9jBGvDr2S_L723q3ui82P78_rG43BQjBUmFUL5tK99z0vOc1U7kkE7wrO9XoZSeBg5AASoNQvVEAcolc1hllInPiklwfcp-Cf54xpnayUeM4gkM_x7Zs2FJwLlmT0cUB1cHHGLBvn4KdIOzbkrWv9tuD_fZoPx98OWbP3YTmHX_TnYGvByAfto9-Di6_-r-0fwQqkJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907322609</pqid></control><display><type>article</type><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><source>American Chemical Society Journals</source><creator>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</creator><creatorcontrib>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</creatorcontrib><description>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b04338</identifier><identifier>PMID: 28594162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-06, Vol.9 (25), p.21267-21275</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</citedby><cites>FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</cites><orcidid>0000-0002-9650-6385 ; 0000-0002-8153-2169 ; 0000-0003-1092-5974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b04338$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b04338$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28594162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><creatorcontrib>Zhong, Yan-Jun</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhong, Ben-He</creatorcontrib><creatorcontrib>Agyeman, Daniel-Adjei</creatorcontrib><creatorcontrib>Lim, Jin-Myoung</creatorcontrib><creatorcontrib>Kim, Du-ho</creatorcontrib><creatorcontrib>Cho, Maeng-hyo</creatorcontrib><creatorcontrib>Kang, Yong-Mook</creatorcontrib><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVJyVdz7bHoGAreyJKtlY_Jsm0CW1rY7dmMpXGtYEuJJFP2H-RnV2E3uXUuMzDPvDAPIZ9LtigZL29AR5jsYtmxSgj1gZyXTVUVitf85H2uqjNyEeMjY1JwVp-SM67qpiolPycvP1xxBxENXUEavEH616aBbvcOwx9MVtMN7DGgKXazczjS-30XrKHbFGad5oCRgjN0N6ANdO0GcDpnrUfUKXg94GQ1jPQXht6H6XVJraNbb-w80Qfv6B2khMFi_EQ-9jBGvDr2S_L723q3ui82P78_rG43BQjBUmFUL5tK99z0vOc1U7kkE7wrO9XoZSeBg5AASoNQvVEAcolc1hllInPiklwfcp-Cf54xpnayUeM4gkM_x7Zs2FJwLlmT0cUB1cHHGLBvn4KdIOzbkrWv9tuD_fZoPx98OWbP3YTmHX_TnYGvByAfto9-Di6_-r-0fwQqkJ4</recordid><startdate>20170628</startdate><enddate>20170628</enddate><creator>Wu, Zhen-Guo</creator><creator>Li, Jun-Tao</creator><creator>Zhong, Yan-Jun</creator><creator>Guo, Xiao-Dong</creator><creator>Huang, Ling</creator><creator>Zhong, Ben-He</creator><creator>Agyeman, Daniel-Adjei</creator><creator>Lim, Jin-Myoung</creator><creator>Kim, Du-ho</creator><creator>Cho, Maeng-hyo</creator><creator>Kang, Yong-Mook</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-1092-5974</orcidid></search><sort><creationdate>20170628</creationdate><title>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</title><author>Wu, Zhen-Guo ; Li, Jun-Tao ; Zhong, Yan-Jun ; Guo, Xiao-Dong ; Huang, Ling ; Zhong, Ben-He ; Agyeman, Daniel-Adjei ; Lim, Jin-Myoung ; Kim, Du-ho ; Cho, Maeng-hyo ; Kang, Yong-Mook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-d8f694cf2df2f25088886032b1b89c7b6a2a36aa8ca38fd8aa67e265250030323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><creatorcontrib>Zhong, Yan-Jun</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhong, Ben-He</creatorcontrib><creatorcontrib>Agyeman, Daniel-Adjei</creatorcontrib><creatorcontrib>Lim, Jin-Myoung</creatorcontrib><creatorcontrib>Kim, Du-ho</creatorcontrib><creatorcontrib>Cho, Maeng-hyo</creatorcontrib><creatorcontrib>Kang, Yong-Mook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhen-Guo</au><au>Li, Jun-Tao</au><au>Zhong, Yan-Jun</au><au>Guo, Xiao-Dong</au><au>Huang, Ling</au><au>Zhong, Ben-He</au><au>Agyeman, Daniel-Adjei</au><au>Lim, Jin-Myoung</au><au>Kim, Du-ho</au><au>Cho, Maeng-hyo</au><au>Kang, Yong-Mook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-28</date><risdate>2017</risdate><volume>9</volume><issue>25</issue><spage>21267</spage><epage>21275</epage><pages>21267-21275</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g–1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g–1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28594162</pmid><doi>10.1021/acsami.7b04338</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-1092-5974</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-06, Vol.9 (25), p.21267-21275
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1907322609
source American Chemical Society Journals
title Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn-Based%20Cathode%20with%20Synergetic%20Layered-Tunnel%20Hybrid%20Structures%20and%20Their%20Enhanced%20Electrochemical%20Performance%20in%20Sodium%20Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Zhen-Guo&rft.date=2017-06-28&rft.volume=9&rft.issue=25&rft.spage=21267&rft.epage=21275&rft.pages=21267-21275&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b04338&rft_dat=%3Cproquest_cross%3E1907322609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907322609&rft_id=info:pmid/28594162&rfr_iscdi=true