FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots

Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2017-08, Vol.215, p.65-72
Hauptverfasser: Zhu, Qingdong, Wang, Li, Dong, Qianli, Chang, Shu, Wen, Kexin, Jia, Shenghua, Chu, Zhilin, Wang, Hanmeng, Gao, Ping, Zhao, Heping, Han, Shengcheng, Wang, Yingdian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 65
container_title Journal of plant physiology
container_volume 215
creator Zhu, Qingdong
Wang, Li
Dong, Qianli
Chang, Shu
Wen, Kexin
Jia, Shenghua
Chu, Zhilin
Wang, Hanmeng
Gao, Ping
Zhao, Heping
Han, Shengcheng
Wang, Yingdian
description Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.
doi_str_mv 10.1016/j.jplph.2017.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1906468567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S017616171730127X</els_id><sourcerecordid>1906468567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhEyChSFy4JPhP4kwOHFDVAlIlJFTOlmNPFkfZOPUklfj2eLtLDxw42Z73ezPyPMbeCl4JLvTHsRqXaflVSS7aijcV5-0zthNaQCmUhOdslwVd5kJ7wV4RjTy_G1Av2YWEBmSrxI7d3_y4vit7S-iL_bS5SFiEg92HeV8Ej_MahoD0JFHYz3aaHtW5SEhLnHN5jUUf4hpcYWdf2POd1gxQdh_R4LBIMa70mr0Y7ET45nxesp8313dXX8vb71--XX2-LZ2Cdi0luL4FX7tB6QEGqyxyEJ1zAr0WqqubXvmur2WvLPe8kSAtdgjOQsebWqtL9uHUd0nxfkNazSGQw2myM8aNjOi4rjU0us3o-3_QMW4pf_RIqU5K6AAypU6US5Eo4WCWlFeVfhvBzTERM5rHRMwxEcMbkxPJrnfn3lt_QP_k-RtBBj6dAMzLeAiYDLmAs0MfErrV-Bj-O-APPPmebQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939228988</pqid></control><display><type>article</type><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</creator><creatorcontrib>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</creatorcontrib><description>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose&gt;2-deoxyglucose&gt;3-O-methylglucose&gt;L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</description><identifier>ISSN: 0176-1617</identifier><identifier>EISSN: 1618-1328</identifier><identifier>DOI: 10.1016/j.jplph.2017.05.007</identifier><identifier>PMID: 28582731</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Abiotic stress ; Biotic stress ; Chitin ; Decoding ; Deoxyglucose ; Energy measurement ; Energy transfer ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; FRET nanosensor ; Gene expression ; Gene Expression Regulation, Plant ; Genetic code ; Glucose ; Glucose - metabolism ; Glucose dynamics ; Intracellular ; Metabolites ; Oryza - genetics ; Oryza - metabolism ; Osmotic stress ; Physiological responses ; Physiology ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants (botany) ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Rice ; Selectivity ; Signaling ; Stimuli ; Stresses ; Sugar ; Yeast</subject><ispartof>Journal of plant physiology, 2017-08, Vol.215, p.65-72</ispartof><rights>2017 Elsevier GmbH</rights><rights>Copyright © 2017 Elsevier GmbH. All rights reserved.</rights><rights>Copyright Urban &amp; Fischer Verlag Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</citedby><cites>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jplph.2017.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28582731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Qingdong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dong, Qianli</creatorcontrib><creatorcontrib>Chang, Shu</creatorcontrib><creatorcontrib>Wen, Kexin</creatorcontrib><creatorcontrib>Jia, Shenghua</creatorcontrib><creatorcontrib>Chu, Zhilin</creatorcontrib><creatorcontrib>Wang, Hanmeng</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhao, Heping</creatorcontrib><creatorcontrib>Han, Shengcheng</creatorcontrib><creatorcontrib>Wang, Yingdian</creatorcontrib><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><title>Journal of plant physiology</title><addtitle>J Plant Physiol</addtitle><description>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose&gt;2-deoxyglucose&gt;3-O-methylglucose&gt;L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</description><subject>Abiotic stress</subject><subject>Biotic stress</subject><subject>Chitin</subject><subject>Decoding</subject><subject>Deoxyglucose</subject><subject>Energy measurement</subject><subject>Energy transfer</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>FRET nanosensor</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic code</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose dynamics</subject><subject>Intracellular</subject><subject>Metabolites</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Osmotic stress</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Rice</subject><subject>Selectivity</subject><subject>Signaling</subject><subject>Stimuli</subject><subject>Stresses</subject><subject>Sugar</subject><subject>Yeast</subject><issn>0176-1617</issn><issn>1618-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhEyChSFy4JPhP4kwOHFDVAlIlJFTOlmNPFkfZOPUklfj2eLtLDxw42Z73ezPyPMbeCl4JLvTHsRqXaflVSS7aijcV5-0zthNaQCmUhOdslwVd5kJ7wV4RjTy_G1Av2YWEBmSrxI7d3_y4vit7S-iL_bS5SFiEg92HeV8Ej_MahoD0JFHYz3aaHtW5SEhLnHN5jUUf4hpcYWdf2POd1gxQdh_R4LBIMa70mr0Y7ET45nxesp8313dXX8vb71--XX2-LZ2Cdi0luL4FX7tB6QEGqyxyEJ1zAr0WqqubXvmur2WvLPe8kSAtdgjOQsebWqtL9uHUd0nxfkNazSGQw2myM8aNjOi4rjU0us3o-3_QMW4pf_RIqU5K6AAypU6US5Eo4WCWlFeVfhvBzTERM5rHRMwxEcMbkxPJrnfn3lt_QP_k-RtBBj6dAMzLeAiYDLmAs0MfErrV-Bj-O-APPPmebQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Zhu, Qingdong</creator><creator>Wang, Li</creator><creator>Dong, Qianli</creator><creator>Chang, Shu</creator><creator>Wen, Kexin</creator><creator>Jia, Shenghua</creator><creator>Chu, Zhilin</creator><creator>Wang, Hanmeng</creator><creator>Gao, Ping</creator><creator>Zhao, Heping</creator><creator>Han, Shengcheng</creator><creator>Wang, Yingdian</creator><general>Elsevier GmbH</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><author>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abiotic stress</topic><topic>Biotic stress</topic><topic>Chitin</topic><topic>Decoding</topic><topic>Deoxyglucose</topic><topic>Energy measurement</topic><topic>Energy transfer</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>FRET nanosensor</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic code</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose dynamics</topic><topic>Intracellular</topic><topic>Metabolites</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Osmotic stress</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Rice</topic><topic>Selectivity</topic><topic>Signaling</topic><topic>Stimuli</topic><topic>Stresses</topic><topic>Sugar</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qingdong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dong, Qianli</creatorcontrib><creatorcontrib>Chang, Shu</creatorcontrib><creatorcontrib>Wen, Kexin</creatorcontrib><creatorcontrib>Jia, Shenghua</creatorcontrib><creatorcontrib>Chu, Zhilin</creatorcontrib><creatorcontrib>Wang, Hanmeng</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhao, Heping</creatorcontrib><creatorcontrib>Han, Shengcheng</creatorcontrib><creatorcontrib>Wang, Yingdian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of plant physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qingdong</au><au>Wang, Li</au><au>Dong, Qianli</au><au>Chang, Shu</au><au>Wen, Kexin</au><au>Jia, Shenghua</au><au>Chu, Zhilin</au><au>Wang, Hanmeng</au><au>Gao, Ping</au><au>Zhao, Heping</au><au>Han, Shengcheng</au><au>Wang, Yingdian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</atitle><jtitle>Journal of plant physiology</jtitle><addtitle>J Plant Physiol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>215</volume><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0176-1617</issn><eissn>1618-1328</eissn><abstract>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose&gt;2-deoxyglucose&gt;3-O-methylglucose&gt;L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>28582731</pmid><doi>10.1016/j.jplph.2017.05.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-1617
ispartof Journal of plant physiology, 2017-08, Vol.215, p.65-72
issn 0176-1617
1618-1328
language eng
recordid cdi_proquest_miscellaneous_1906468567
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Abiotic stress
Biotic stress
Chitin
Decoding
Deoxyglucose
Energy measurement
Energy transfer
Fluorescence resonance energy transfer
Fluorescence Resonance Energy Transfer - methods
FRET nanosensor
Gene expression
Gene Expression Regulation, Plant
Genetic code
Glucose
Glucose - metabolism
Glucose dynamics
Intracellular
Metabolites
Oryza - genetics
Oryza - metabolism
Osmotic stress
Physiological responses
Physiology
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - metabolism
Plants (botany)
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Rice
Selectivity
Signaling
Stimuli
Stresses
Sugar
Yeast
title FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-based%20glucose%20imaging%20identifies%20glucose%20signalling%20in%20response%20to%20biotic%20and%20abiotic%20stresses%20in%20rice%20roots&rft.jtitle=Journal%20of%20plant%20physiology&rft.au=Zhu,%20Qingdong&rft.date=2017-08&rft.volume=215&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0176-1617&rft.eissn=1618-1328&rft_id=info:doi/10.1016/j.jplph.2017.05.007&rft_dat=%3Cproquest_cross%3E1906468567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939228988&rft_id=info:pmid/28582731&rft_els_id=S017616171730127X&rfr_iscdi=true