FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots
Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2017-08, Vol.215, p.65-72 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | Journal of plant physiology |
container_volume | 215 |
creator | Zhu, Qingdong Wang, Li Dong, Qianli Chang, Shu Wen, Kexin Jia, Shenghua Chu, Zhilin Wang, Hanmeng Gao, Ping Zhao, Heping Han, Shengcheng Wang, Yingdian |
description | Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants. |
doi_str_mv | 10.1016/j.jplph.2017.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1906468567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S017616171730127X</els_id><sourcerecordid>1906468567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhEyChSFy4JPhP4kwOHFDVAlIlJFTOlmNPFkfZOPUklfj2eLtLDxw42Z73ezPyPMbeCl4JLvTHsRqXaflVSS7aijcV5-0zthNaQCmUhOdslwVd5kJ7wV4RjTy_G1Av2YWEBmSrxI7d3_y4vit7S-iL_bS5SFiEg92HeV8Ej_MahoD0JFHYz3aaHtW5SEhLnHN5jUUf4hpcYWdf2POd1gxQdh_R4LBIMa70mr0Y7ET45nxesp8313dXX8vb71--XX2-LZ2Cdi0luL4FX7tB6QEGqyxyEJ1zAr0WqqubXvmur2WvLPe8kSAtdgjOQsebWqtL9uHUd0nxfkNazSGQw2myM8aNjOi4rjU0us3o-3_QMW4pf_RIqU5K6AAypU6US5Eo4WCWlFeVfhvBzTERM5rHRMwxEcMbkxPJrnfn3lt_QP_k-RtBBj6dAMzLeAiYDLmAs0MfErrV-Bj-O-APPPmebQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939228988</pqid></control><display><type>article</type><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</creator><creatorcontrib>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</creatorcontrib><description>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</description><identifier>ISSN: 0176-1617</identifier><identifier>EISSN: 1618-1328</identifier><identifier>DOI: 10.1016/j.jplph.2017.05.007</identifier><identifier>PMID: 28582731</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Abiotic stress ; Biotic stress ; Chitin ; Decoding ; Deoxyglucose ; Energy measurement ; Energy transfer ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; FRET nanosensor ; Gene expression ; Gene Expression Regulation, Plant ; Genetic code ; Glucose ; Glucose - metabolism ; Glucose dynamics ; Intracellular ; Metabolites ; Oryza - genetics ; Oryza - metabolism ; Osmotic stress ; Physiological responses ; Physiology ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants (botany) ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Rice ; Selectivity ; Signaling ; Stimuli ; Stresses ; Sugar ; Yeast</subject><ispartof>Journal of plant physiology, 2017-08, Vol.215, p.65-72</ispartof><rights>2017 Elsevier GmbH</rights><rights>Copyright © 2017 Elsevier GmbH. All rights reserved.</rights><rights>Copyright Urban & Fischer Verlag Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</citedby><cites>FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jplph.2017.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28582731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Qingdong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dong, Qianli</creatorcontrib><creatorcontrib>Chang, Shu</creatorcontrib><creatorcontrib>Wen, Kexin</creatorcontrib><creatorcontrib>Jia, Shenghua</creatorcontrib><creatorcontrib>Chu, Zhilin</creatorcontrib><creatorcontrib>Wang, Hanmeng</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhao, Heping</creatorcontrib><creatorcontrib>Han, Shengcheng</creatorcontrib><creatorcontrib>Wang, Yingdian</creatorcontrib><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><title>Journal of plant physiology</title><addtitle>J Plant Physiol</addtitle><description>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</description><subject>Abiotic stress</subject><subject>Biotic stress</subject><subject>Chitin</subject><subject>Decoding</subject><subject>Deoxyglucose</subject><subject>Energy measurement</subject><subject>Energy transfer</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>FRET nanosensor</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic code</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose dynamics</subject><subject>Intracellular</subject><subject>Metabolites</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Osmotic stress</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Rice</subject><subject>Selectivity</subject><subject>Signaling</subject><subject>Stimuli</subject><subject>Stresses</subject><subject>Sugar</subject><subject>Yeast</subject><issn>0176-1617</issn><issn>1618-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhEyChSFy4JPhP4kwOHFDVAlIlJFTOlmNPFkfZOPUklfj2eLtLDxw42Z73ezPyPMbeCl4JLvTHsRqXaflVSS7aijcV5-0zthNaQCmUhOdslwVd5kJ7wV4RjTy_G1Av2YWEBmSrxI7d3_y4vit7S-iL_bS5SFiEg92HeV8Ej_MahoD0JFHYz3aaHtW5SEhLnHN5jUUf4hpcYWdf2POd1gxQdh_R4LBIMa70mr0Y7ET45nxesp8313dXX8vb71--XX2-LZ2Cdi0luL4FX7tB6QEGqyxyEJ1zAr0WqqubXvmur2WvLPe8kSAtdgjOQsebWqtL9uHUd0nxfkNazSGQw2myM8aNjOi4rjU0us3o-3_QMW4pf_RIqU5K6AAypU6US5Eo4WCWlFeVfhvBzTERM5rHRMwxEcMbkxPJrnfn3lt_QP_k-RtBBj6dAMzLeAiYDLmAs0MfErrV-Bj-O-APPPmebQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Zhu, Qingdong</creator><creator>Wang, Li</creator><creator>Dong, Qianli</creator><creator>Chang, Shu</creator><creator>Wen, Kexin</creator><creator>Jia, Shenghua</creator><creator>Chu, Zhilin</creator><creator>Wang, Hanmeng</creator><creator>Gao, Ping</creator><creator>Zhao, Heping</creator><creator>Han, Shengcheng</creator><creator>Wang, Yingdian</creator><general>Elsevier GmbH</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</title><author>Zhu, Qingdong ; Wang, Li ; Dong, Qianli ; Chang, Shu ; Wen, Kexin ; Jia, Shenghua ; Chu, Zhilin ; Wang, Hanmeng ; Gao, Ping ; Zhao, Heping ; Han, Shengcheng ; Wang, Yingdian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-28cb78d4cf36f8fa3ae0819cc1ed613945b3d9b42b3a0d05282ae9e8ca8905463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abiotic stress</topic><topic>Biotic stress</topic><topic>Chitin</topic><topic>Decoding</topic><topic>Deoxyglucose</topic><topic>Energy measurement</topic><topic>Energy transfer</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>FRET nanosensor</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic code</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose dynamics</topic><topic>Intracellular</topic><topic>Metabolites</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Osmotic stress</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Rice</topic><topic>Selectivity</topic><topic>Signaling</topic><topic>Stimuli</topic><topic>Stresses</topic><topic>Sugar</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qingdong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dong, Qianli</creatorcontrib><creatorcontrib>Chang, Shu</creatorcontrib><creatorcontrib>Wen, Kexin</creatorcontrib><creatorcontrib>Jia, Shenghua</creatorcontrib><creatorcontrib>Chu, Zhilin</creatorcontrib><creatorcontrib>Wang, Hanmeng</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhao, Heping</creatorcontrib><creatorcontrib>Han, Shengcheng</creatorcontrib><creatorcontrib>Wang, Yingdian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of plant physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qingdong</au><au>Wang, Li</au><au>Dong, Qianli</au><au>Chang, Shu</au><au>Wen, Kexin</au><au>Jia, Shenghua</au><au>Chu, Zhilin</au><au>Wang, Hanmeng</au><au>Gao, Ping</au><au>Zhao, Heping</au><au>Han, Shengcheng</au><au>Wang, Yingdian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots</atitle><jtitle>Journal of plant physiology</jtitle><addtitle>J Plant Physiol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>215</volume><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0176-1617</issn><eissn>1618-1328</eissn><abstract>Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu–2μ∆13 and FLIPglu–600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu–2μΔ13 was approximately 10.05μM, and that for FLIPglu–600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu–2μΔ13 in a stimulus-specific manner, but not in FLIPglu–600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2–20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>28582731</pmid><doi>10.1016/j.jplph.2017.05.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0176-1617 |
ispartof | Journal of plant physiology, 2017-08, Vol.215, p.65-72 |
issn | 0176-1617 1618-1328 |
language | eng |
recordid | cdi_proquest_miscellaneous_1906468567 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Abiotic stress Biotic stress Chitin Decoding Deoxyglucose Energy measurement Energy transfer Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - methods FRET nanosensor Gene expression Gene Expression Regulation, Plant Genetic code Glucose Glucose - metabolism Glucose dynamics Intracellular Metabolites Oryza - genetics Oryza - metabolism Osmotic stress Physiological responses Physiology Plant Proteins - metabolism Plant Roots - genetics Plant Roots - metabolism Plants (botany) Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Rice Selectivity Signaling Stimuli Stresses Sugar Yeast |
title | FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-based%20glucose%20imaging%20identifies%20glucose%20signalling%20in%20response%20to%20biotic%20and%20abiotic%20stresses%20in%20rice%20roots&rft.jtitle=Journal%20of%20plant%20physiology&rft.au=Zhu,%20Qingdong&rft.date=2017-08&rft.volume=215&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0176-1617&rft.eissn=1618-1328&rft_id=info:doi/10.1016/j.jplph.2017.05.007&rft_dat=%3Cproquest_cross%3E1906468567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939228988&rft_id=info:pmid/28582731&rft_els_id=S017616171730127X&rfr_iscdi=true |