Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters formed by Atomic‐Layer‐Deposition‐Induced Doping

Recently, α‐MoTe2, a 2D transition‐metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α‐MoTe2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-08, Vol.29 (30), p.n/a
Hauptverfasser: Lim, June Yeong, Pezeshki, Atiye, Oh, Sehoon, Kim, Jin Sung, Lee, Young Tack, Yu, Sanghyuck, Hwang, Do Kyung, Lee, Gwan‐Hyoung, Choi, Hyoung Joon, Im, Seongil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, α‐MoTe2, a 2D transition‐metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α‐MoTe2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandgap of thin α‐MoTe2 appears close to that of Si and is quite smaller than those of other typical TMD semiconductors. Even though there have been a few attempts to control the charge‐carrier polarity of MoTe2, functional devices such as p–n junction or complementary metal–oxide–semiconductor (CMOS) inverters have not been reported. Here, we demonstrate a 2D CMOS inverter and p–n junction diode in a single α‐MoTe2 nanosheet by a straightforward selective doping technique. In a single α‐MoTe2 flake, an initially p‐doped channel is selectively converted to an n‐doped region with high electron mobility of 18 cm2 V−1 s−1 by atomic‐layer‐deposition‐induced H‐doping. The ultrathin CMOS inverter exhibits a high DC voltage gain of 29, an AC gain of 18 at 1 kHz, and a low static power consumption of a few nanowatts. The results show a great potential of α‐MoTe2 for future electronic devices based on 2D semiconducting materials. Homogeneous 2D MoTe2 p–n junction and complementary metal–oxide–semiconductor (CMOS) inverters integrated by selective n‐type doping are demonstrated, which are obtained by H‐diffusion during atomic layer deposition on initial p‐type MoTe2. This 2D α‐MoTe2 CMOS inverters with a p–n junction exhibits promising static and dynamic performances, forecasting future prospects to overcome the limits of 3D Si CMOS.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201701798