Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)

Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forensic sciences 2017-09, Vol.62 (5), p.1205-1212
Hauptverfasser: Bukar, Ali M., Ugail, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1212
container_issue 5
container_start_page 1205
container_title Journal of forensic sciences
container_volume 62
creator Bukar, Ali M.
Ugail, Hassan
description Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.
doi_str_mv 10.1111/1556-4029.13523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1906465746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906465746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhw5q2O_dWCNglPbgVZUmRj13Q7ANB0yLJWaBtunHh2IkUY8i_r7JkPewyXgiQD18QD2NXIG4h1h1obRIlZHYLqZbpBzZ4n3xkAyGkTAAye8bOQ3gVQhgw8JmdSautNhkM2PMEixobfv9CfL5vdysKdeDLULcvfL5BH4g_od8dkClh2PH5tkdPgQ8XK-JjjPuu4t-o5Y9E5QrXN5fsU4VNoC-nfsGWk4fF-EcynX3_Ob6fJoUCmSaVrso8t4igcUTWGKMKsnn8SxnICKQoSUhbScxGSuUFQIlWGp1hWuYqLdMLNjzmbny37Sns3LoOBTUNttT1wUEmjDJ6pExEv_6Dvna9b-N3kUq1AKW1jdTdkSp8F4Knym18vUa_dyDcwbY7uHUHt-6P7Xhxfcrt8zWV7_xfvRHQR-B33dD-f3nu12R2DH4DaG6GGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935014558</pqid></control><display><type>article</type><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><source>Wiley Online Library</source><creator>Bukar, Ali M. ; Ugail, Hassan</creator><creatorcontrib>Bukar, Ali M. ; Ugail, Hassan</creatorcontrib><description>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/1556-4029.13523</identifier><identifier>PMID: 28585691</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>active appearance model ; Age ; age estimation ; age progression ; age synthesis ; Algorithms ; Ben Needham ; Face ; Feature extraction ; forensic science ; Forensic sciences ; Least squares method ; Missing persons ; Regression analysis ; sparse partial least squares regression</subject><ispartof>Journal of forensic sciences, 2017-09, Vol.62 (5), p.1205-1212</ispartof><rights>2017 American Academy of Forensic Sciences</rights><rights>2017 American Academy of Forensic Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</citedby><cites>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1556-4029.13523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1556-4029.13523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28585691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukar, Ali M.</creatorcontrib><creatorcontrib>Ugail, Hassan</creatorcontrib><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</description><subject>active appearance model</subject><subject>Age</subject><subject>age estimation</subject><subject>age progression</subject><subject>age synthesis</subject><subject>Algorithms</subject><subject>Ben Needham</subject><subject>Face</subject><subject>Feature extraction</subject><subject>forensic science</subject><subject>Forensic sciences</subject><subject>Least squares method</subject><subject>Missing persons</subject><subject>Regression analysis</subject><subject>sparse partial least squares regression</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoVhw5q2O_dWCNglPbgVZUmRj13Q7ANB0yLJWaBtunHh2IkUY8i_r7JkPewyXgiQD18QD2NXIG4h1h1obRIlZHYLqZbpBzZ4n3xkAyGkTAAye8bOQ3gVQhgw8JmdSautNhkM2PMEixobfv9CfL5vdysKdeDLULcvfL5BH4g_od8dkClh2PH5tkdPgQ8XK-JjjPuu4t-o5Y9E5QrXN5fsU4VNoC-nfsGWk4fF-EcynX3_Ob6fJoUCmSaVrso8t4igcUTWGKMKsnn8SxnICKQoSUhbScxGSuUFQIlWGp1hWuYqLdMLNjzmbny37Sns3LoOBTUNttT1wUEmjDJ6pExEv_6Dvna9b-N3kUq1AKW1jdTdkSp8F4Knym18vUa_dyDcwbY7uHUHt-6P7Xhxfcrt8zWV7_xfvRHQR-B33dD-f3nu12R2DH4DaG6GGQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Bukar, Ali M.</creator><creator>Ugail, Hassan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><author>Bukar, Ali M. ; Ugail, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>active appearance model</topic><topic>Age</topic><topic>age estimation</topic><topic>age progression</topic><topic>age synthesis</topic><topic>Algorithms</topic><topic>Ben Needham</topic><topic>Face</topic><topic>Feature extraction</topic><topic>forensic science</topic><topic>Forensic sciences</topic><topic>Least squares method</topic><topic>Missing persons</topic><topic>Regression analysis</topic><topic>sparse partial least squares regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukar, Ali M.</creatorcontrib><creatorcontrib>Ugail, Hassan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bukar, Ali M.</au><au>Ugail, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2017-09</date><risdate>2017</risdate><volume>62</volume><issue>5</issue><spage>1205</spage><epage>1212</epage><pages>1205-1212</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><abstract>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28585691</pmid><doi>10.1111/1556-4029.13523</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1198
ispartof Journal of forensic sciences, 2017-09, Vol.62 (5), p.1205-1212
issn 0022-1198
1556-4029
language eng
recordid cdi_proquest_miscellaneous_1906465746
source Wiley Online Library
subjects active appearance model
Age
age estimation
age progression
age synthesis
Algorithms
Ben Needham
Face
Feature extraction
forensic science
Forensic sciences
Least squares method
Missing persons
Regression analysis
sparse partial least squares regression
title Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Age%20Synthesis%20Using%20Sparse%20Partial%20Least%20Squares%20(The%20Case%20of%20Ben%20Needham)&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Bukar,%20Ali%20M.&rft.date=2017-09&rft.volume=62&rft.issue=5&rft.spage=1205&rft.epage=1212&rft.pages=1205-1212&rft.issn=0022-1198&rft.eissn=1556-4029&rft_id=info:doi/10.1111/1556-4029.13523&rft_dat=%3Cproquest_cross%3E1906465746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935014558&rft_id=info:pmid/28585691&rfr_iscdi=true