Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)
Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available...
Gespeichert in:
Veröffentlicht in: | Journal of forensic sciences 2017-09, Vol.62 (5), p.1205-1212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1212 |
---|---|
container_issue | 5 |
container_start_page | 1205 |
container_title | Journal of forensic sciences |
container_volume | 62 |
creator | Bukar, Ali M. Ugail, Hassan |
description | Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide. |
doi_str_mv | 10.1111/1556-4029.13523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1906465746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906465746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhw5q2O_dWCNglPbgVZUmRj13Q7ANB0yLJWaBtunHh2IkUY8i_r7JkPewyXgiQD18QD2NXIG4h1h1obRIlZHYLqZbpBzZ4n3xkAyGkTAAye8bOQ3gVQhgw8JmdSautNhkM2PMEixobfv9CfL5vdysKdeDLULcvfL5BH4g_od8dkClh2PH5tkdPgQ8XK-JjjPuu4t-o5Y9E5QrXN5fsU4VNoC-nfsGWk4fF-EcynX3_Ob6fJoUCmSaVrso8t4igcUTWGKMKsnn8SxnICKQoSUhbScxGSuUFQIlWGp1hWuYqLdMLNjzmbny37Sns3LoOBTUNttT1wUEmjDJ6pExEv_6Dvna9b-N3kUq1AKW1jdTdkSp8F4Knym18vUa_dyDcwbY7uHUHt-6P7Xhxfcrt8zWV7_xfvRHQR-B33dD-f3nu12R2DH4DaG6GGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935014558</pqid></control><display><type>article</type><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><source>Wiley Online Library</source><creator>Bukar, Ali M. ; Ugail, Hassan</creator><creatorcontrib>Bukar, Ali M. ; Ugail, Hassan</creatorcontrib><description>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/1556-4029.13523</identifier><identifier>PMID: 28585691</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>active appearance model ; Age ; age estimation ; age progression ; age synthesis ; Algorithms ; Ben Needham ; Face ; Feature extraction ; forensic science ; Forensic sciences ; Least squares method ; Missing persons ; Regression analysis ; sparse partial least squares regression</subject><ispartof>Journal of forensic sciences, 2017-09, Vol.62 (5), p.1205-1212</ispartof><rights>2017 American Academy of Forensic Sciences</rights><rights>2017 American Academy of Forensic Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</citedby><cites>FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1556-4029.13523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1556-4029.13523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28585691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukar, Ali M.</creatorcontrib><creatorcontrib>Ugail, Hassan</creatorcontrib><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</description><subject>active appearance model</subject><subject>Age</subject><subject>age estimation</subject><subject>age progression</subject><subject>age synthesis</subject><subject>Algorithms</subject><subject>Ben Needham</subject><subject>Face</subject><subject>Feature extraction</subject><subject>forensic science</subject><subject>Forensic sciences</subject><subject>Least squares method</subject><subject>Missing persons</subject><subject>Regression analysis</subject><subject>sparse partial least squares regression</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoVhw5q2O_dWCNglPbgVZUmRj13Q7ANB0yLJWaBtunHh2IkUY8i_r7JkPewyXgiQD18QD2NXIG4h1h1obRIlZHYLqZbpBzZ4n3xkAyGkTAAye8bOQ3gVQhgw8JmdSautNhkM2PMEixobfv9CfL5vdysKdeDLULcvfL5BH4g_od8dkClh2PH5tkdPgQ8XK-JjjPuu4t-o5Y9E5QrXN5fsU4VNoC-nfsGWk4fF-EcynX3_Ob6fJoUCmSaVrso8t4igcUTWGKMKsnn8SxnICKQoSUhbScxGSuUFQIlWGp1hWuYqLdMLNjzmbny37Sns3LoOBTUNttT1wUEmjDJ6pExEv_6Dvna9b-N3kUq1AKW1jdTdkSp8F4Knym18vUa_dyDcwbY7uHUHt-6P7Xhxfcrt8zWV7_xfvRHQR-B33dD-f3nu12R2DH4DaG6GGQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Bukar, Ali M.</creator><creator>Ugail, Hassan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</title><author>Bukar, Ali M. ; Ugail, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-f5fdbb8aa15a7e86664ce8b5854619e120de028f2a9744bc11da82659a3db43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>active appearance model</topic><topic>Age</topic><topic>age estimation</topic><topic>age progression</topic><topic>age synthesis</topic><topic>Algorithms</topic><topic>Ben Needham</topic><topic>Face</topic><topic>Feature extraction</topic><topic>forensic science</topic><topic>Forensic sciences</topic><topic>Least squares method</topic><topic>Missing persons</topic><topic>Regression analysis</topic><topic>sparse partial least squares regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukar, Ali M.</creatorcontrib><creatorcontrib>Ugail, Hassan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bukar, Ali M.</au><au>Ugail, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham)</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2017-09</date><risdate>2017</risdate><volume>62</volume><issue>5</issue><spage>1205</spage><epage>1212</epage><pages>1205-1212</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><abstract>Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28585691</pmid><doi>10.1111/1556-4029.13523</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1198 |
ispartof | Journal of forensic sciences, 2017-09, Vol.62 (5), p.1205-1212 |
issn | 0022-1198 1556-4029 |
language | eng |
recordid | cdi_proquest_miscellaneous_1906465746 |
source | Wiley Online Library |
subjects | active appearance model Age age estimation age progression age synthesis Algorithms Ben Needham Face Feature extraction forensic science Forensic sciences Least squares method Missing persons Regression analysis sparse partial least squares regression |
title | Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Age%20Synthesis%20Using%20Sparse%20Partial%20Least%20Squares%20(The%20Case%20of%20Ben%20Needham)&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Bukar,%20Ali%20M.&rft.date=2017-09&rft.volume=62&rft.issue=5&rft.spage=1205&rft.epage=1212&rft.pages=1205-1212&rft.issn=0022-1198&rft.eissn=1556-4029&rft_id=info:doi/10.1111/1556-4029.13523&rft_dat=%3Cproquest_cross%3E1906465746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935014558&rft_id=info:pmid/28585691&rfr_iscdi=true |