Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and their associations with milk production traits in Norwegian Red cows

The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2017-08, Vol.100 (8), p.6298-6311
Hauptverfasser: Belay, T.K., Svendsen, M., Kowalski, Z.M., Ådnøy, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from −0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from −0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlat
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-12458