Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects

Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug metabolism and disposition 2017-08, Vol.45 (8), p.908-919
Hauptverfasser: Shen, Hong, Chen, Weiqi, Drexler, Dieter M., Mandlekar, Sandhya, Holenarsipur, Vinay K., Shields, Eric E., Langish, Robert, Sidik, Kurex, Gan, Jinping, Humphreys, W. Griffith, Marathe, Punit, Lai, Yurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 8
container_start_page 908
container_title Drug metabolism and disposition
container_volume 45
creator Shen, Hong
Chen, Weiqi
Drexler, Dieter M.
Mandlekar, Sandhya
Holenarsipur, Vinay K.
Shields, Eric E.
Langish, Robert
Sidik, Kurex
Gan, Jinping
Humphreys, W. Griffith
Marathe, Punit
Lai, Yurong
description Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.
doi_str_mv 10.1124/dmd.117.075531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1905734852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090955624053868</els_id><sourcerecordid>1905734852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhyhFZ4sKhWfyZj-OyFBqpqJVYJG6R40y0XpI4tZOF_YH8L6a7BQkk5MM7Hj2eeT1DyEvOlpwL9bbpGwyyJcu0lvwRWXAteMJY8fUxWaCwpNA6PSPPYtwxxpWSxVNyJnKdpVmaLsjPte9HE8zk9kAv96abMfQD9S297UzsDX3nOqAr65p4Qd_D9tAED6MzA2qcIPgB6Oe5a80EF_QKfpgGrBmgcf6YQY5uYAp_pel3N23p2o_Bjz6M20NwQ6TlES5L1Eg_mfANQrz3cbPa3NJy2LraHa25AfuYbtoesHG9AzvF5-RJa7oILx70nHz5cLlZXyXXNx_L9eo6sVJkPMkVqw3PWwO6VUWRZ9KolkuRCp0yvMkilUIxaFpta160acNRUy6skBqPPCdvTnXR-d0Mcap6Fy10HX7Nz7HiBdOZVLkWiL7-B935OQzorhJM5IWSUnGklifK4jRjgLYag-tNOFScVfcLrnDBGGTVacH44NVD2bnuofmD_94oAvkJAJzD3kGoonUwWBx9wFFVjXf_q_0LEJ-1SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028943341</pqid></control><display><type>article</type><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</creator><creatorcontrib>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</creatorcontrib><description>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I &gt; CP III &gt; HDA ≈ TDA ≈ RSV &gt; &gt; BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</description><identifier>ISSN: 0090-9556</identifier><identifier>EISSN: 1521-009X</identifier><identifier>DOI: 10.1124/dmd.117.075531</identifier><identifier>PMID: 28576766</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Area Under Curve ; Bile ; Bile acids ; Bile Acids and Salts - blood ; Biological Transport - drug effects ; Biomarkers ; Biomarkers - blood ; Cell Line ; Change detection ; Coproporphyrins - blood ; Dehydroepiandrosterone ; Dehydroepiandrosterone sulfate ; Dehydroepiandrosterone Sulfate - blood ; Drug Interactions - physiology ; Fatty acids ; Healthy Volunteers ; HEK293 Cells ; Humans ; Inhibition ; Male ; Middle Aged ; Organic Anion Transporters - antagonists &amp; inhibitors ; Organic anion transporting polypeptide ; Palmitic Acids - blood ; Pharmacokinetics ; Pharmacology ; Probes ; Rifampin ; Rifampin - pharmacology ; Rosuvastatin Calcium - pharmacology ; Statistical analysis ; Statistical methods ; Sulfates ; Young Adult</subject><ispartof>Drug metabolism and disposition, 2017-08, Vol.45 (8), p.908-919</ispartof><rights>2017 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.</rights><rights>Copyright Lippincott Williams &amp; Wilkins Ovid Technologies Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</citedby><cites>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28576766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Chen, Weiqi</creatorcontrib><creatorcontrib>Drexler, Dieter M.</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Holenarsipur, Vinay K.</creatorcontrib><creatorcontrib>Shields, Eric E.</creatorcontrib><creatorcontrib>Langish, Robert</creatorcontrib><creatorcontrib>Sidik, Kurex</creatorcontrib><creatorcontrib>Gan, Jinping</creatorcontrib><creatorcontrib>Humphreys, W. Griffith</creatorcontrib><creatorcontrib>Marathe, Punit</creatorcontrib><creatorcontrib>Lai, Yurong</creatorcontrib><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><title>Drug metabolism and disposition</title><addtitle>Drug Metab Dispos</addtitle><description>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I &gt; CP III &gt; HDA ≈ TDA ≈ RSV &gt; &gt; BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Area Under Curve</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - blood</subject><subject>Biological Transport - drug effects</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Cell Line</subject><subject>Change detection</subject><subject>Coproporphyrins - blood</subject><subject>Dehydroepiandrosterone</subject><subject>Dehydroepiandrosterone sulfate</subject><subject>Dehydroepiandrosterone Sulfate - blood</subject><subject>Drug Interactions - physiology</subject><subject>Fatty acids</subject><subject>Healthy Volunteers</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Organic Anion Transporters - antagonists &amp; inhibitors</subject><subject>Organic anion transporting polypeptide</subject><subject>Palmitic Acids - blood</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Probes</subject><subject>Rifampin</subject><subject>Rifampin - pharmacology</subject><subject>Rosuvastatin Calcium - pharmacology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sulfates</subject><subject>Young Adult</subject><issn>0090-9556</issn><issn>1521-009X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhyhFZ4sKhWfyZj-OyFBqpqJVYJG6R40y0XpI4tZOF_YH8L6a7BQkk5MM7Hj2eeT1DyEvOlpwL9bbpGwyyJcu0lvwRWXAteMJY8fUxWaCwpNA6PSPPYtwxxpWSxVNyJnKdpVmaLsjPte9HE8zk9kAv96abMfQD9S297UzsDX3nOqAr65p4Qd_D9tAED6MzA2qcIPgB6Oe5a80EF_QKfpgGrBmgcf6YQY5uYAp_pel3N23p2o_Bjz6M20NwQ6TlES5L1Eg_mfANQrz3cbPa3NJy2LraHa25AfuYbtoesHG9AzvF5-RJa7oILx70nHz5cLlZXyXXNx_L9eo6sVJkPMkVqw3PWwO6VUWRZ9KolkuRCp0yvMkilUIxaFpta160acNRUy6skBqPPCdvTnXR-d0Mcap6Fy10HX7Nz7HiBdOZVLkWiL7-B935OQzorhJM5IWSUnGklifK4jRjgLYag-tNOFScVfcLrnDBGGTVacH44NVD2bnuofmD_94oAvkJAJzD3kGoonUwWBx9wFFVjXf_q_0LEJ-1SA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Shen, Hong</creator><creator>Chen, Weiqi</creator><creator>Drexler, Dieter M.</creator><creator>Mandlekar, Sandhya</creator><creator>Holenarsipur, Vinay K.</creator><creator>Shields, Eric E.</creator><creator>Langish, Robert</creator><creator>Sidik, Kurex</creator><creator>Gan, Jinping</creator><creator>Humphreys, W. Griffith</creator><creator>Marathe, Punit</creator><creator>Lai, Yurong</creator><general>Elsevier Inc</general><general>American Society for Pharmacology and Experimental Therapeutics, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><author>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Area Under Curve</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - blood</topic><topic>Biological Transport - drug effects</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Cell Line</topic><topic>Change detection</topic><topic>Coproporphyrins - blood</topic><topic>Dehydroepiandrosterone</topic><topic>Dehydroepiandrosterone sulfate</topic><topic>Dehydroepiandrosterone Sulfate - blood</topic><topic>Drug Interactions - physiology</topic><topic>Fatty acids</topic><topic>Healthy Volunteers</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Organic Anion Transporters - antagonists &amp; inhibitors</topic><topic>Organic anion transporting polypeptide</topic><topic>Palmitic Acids - blood</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Probes</topic><topic>Rifampin</topic><topic>Rifampin - pharmacology</topic><topic>Rosuvastatin Calcium - pharmacology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sulfates</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Chen, Weiqi</creatorcontrib><creatorcontrib>Drexler, Dieter M.</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Holenarsipur, Vinay K.</creatorcontrib><creatorcontrib>Shields, Eric E.</creatorcontrib><creatorcontrib>Langish, Robert</creatorcontrib><creatorcontrib>Sidik, Kurex</creatorcontrib><creatorcontrib>Gan, Jinping</creatorcontrib><creatorcontrib>Humphreys, W. Griffith</creatorcontrib><creatorcontrib>Marathe, Punit</creatorcontrib><creatorcontrib>Lai, Yurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Drug metabolism and disposition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hong</au><au>Chen, Weiqi</au><au>Drexler, Dieter M.</au><au>Mandlekar, Sandhya</au><au>Holenarsipur, Vinay K.</au><au>Shields, Eric E.</au><au>Langish, Robert</au><au>Sidik, Kurex</au><au>Gan, Jinping</au><au>Humphreys, W. Griffith</au><au>Marathe, Punit</au><au>Lai, Yurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</atitle><jtitle>Drug metabolism and disposition</jtitle><addtitle>Drug Metab Dispos</addtitle><date>2017-08</date><risdate>2017</risdate><volume>45</volume><issue>8</issue><spage>908</spage><epage>919</epage><pages>908-919</pages><issn>0090-9556</issn><eissn>1521-009X</eissn><abstract>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I &gt; CP III &gt; HDA ≈ TDA ≈ RSV &gt; &gt; BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28576766</pmid><doi>10.1124/dmd.117.075531</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-9556
ispartof Drug metabolism and disposition, 2017-08, Vol.45 (8), p.908-919
issn 0090-9556
1521-009X
language eng
recordid cdi_proquest_miscellaneous_1905734852
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adolescent
Adult
Area Under Curve
Bile
Bile acids
Bile Acids and Salts - blood
Biological Transport - drug effects
Biomarkers
Biomarkers - blood
Cell Line
Change detection
Coproporphyrins - blood
Dehydroepiandrosterone
Dehydroepiandrosterone sulfate
Dehydroepiandrosterone Sulfate - blood
Drug Interactions - physiology
Fatty acids
Healthy Volunteers
HEK293 Cells
Humans
Inhibition
Male
Middle Aged
Organic Anion Transporters - antagonists & inhibitors
Organic anion transporting polypeptide
Palmitic Acids - blood
Pharmacokinetics
Pharmacology
Probes
Rifampin
Rifampin - pharmacology
Rosuvastatin Calcium - pharmacology
Statistical analysis
Statistical methods
Sulfates
Young Adult
title Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Evaluation%20of%20Plasma%20Bile%20Acids,%20Dehydroepiandrosterone%20Sulfate,%20Hexadecanedioate,%20and%20Tetradecanedioate%20with%20Coproporphyrins%20I%20and%20III%20as%20Markers%20of%20OATP%20Inhibition%20in%20Healthy%20Subjects&rft.jtitle=Drug%20metabolism%20and%20disposition&rft.au=Shen,%20Hong&rft.date=2017-08&rft.volume=45&rft.issue=8&rft.spage=908&rft.epage=919&rft.pages=908-919&rft.issn=0090-9556&rft.eissn=1521-009X&rft_id=info:doi/10.1124/dmd.117.075531&rft_dat=%3Cproquest_cross%3E1905734852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2028943341&rft_id=info:pmid/28576766&rft_els_id=S0090955624053868&rfr_iscdi=true