Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects
Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition a...
Gespeichert in:
Veröffentlicht in: | Drug metabolism and disposition 2017-08, Vol.45 (8), p.908-919 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 919 |
---|---|
container_issue | 8 |
container_start_page | 908 |
container_title | Drug metabolism and disposition |
container_volume | 45 |
creator | Shen, Hong Chen, Weiqi Drexler, Dieter M. Mandlekar, Sandhya Holenarsipur, Vinay K. Shields, Eric E. Langish, Robert Sidik, Kurex Gan, Jinping Humphreys, W. Griffith Marathe, Punit Lai, Yurong |
description | Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs. |
doi_str_mv | 10.1124/dmd.117.075531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1905734852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090955624053868</els_id><sourcerecordid>1905734852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhyhFZ4sKhWfyZj-OyFBqpqJVYJG6R40y0XpI4tZOF_YH8L6a7BQkk5MM7Hj2eeT1DyEvOlpwL9bbpGwyyJcu0lvwRWXAteMJY8fUxWaCwpNA6PSPPYtwxxpWSxVNyJnKdpVmaLsjPte9HE8zk9kAv96abMfQD9S297UzsDX3nOqAr65p4Qd_D9tAED6MzA2qcIPgB6Oe5a80EF_QKfpgGrBmgcf6YQY5uYAp_pel3N23p2o_Bjz6M20NwQ6TlES5L1Eg_mfANQrz3cbPa3NJy2LraHa25AfuYbtoesHG9AzvF5-RJa7oILx70nHz5cLlZXyXXNx_L9eo6sVJkPMkVqw3PWwO6VUWRZ9KolkuRCp0yvMkilUIxaFpta160acNRUy6skBqPPCdvTnXR-d0Mcap6Fy10HX7Nz7HiBdOZVLkWiL7-B935OQzorhJM5IWSUnGklifK4jRjgLYag-tNOFScVfcLrnDBGGTVacH44NVD2bnuofmD_94oAvkJAJzD3kGoonUwWBx9wFFVjXf_q_0LEJ-1SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028943341</pqid></control><display><type>article</type><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</creator><creatorcontrib>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</creatorcontrib><description>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</description><identifier>ISSN: 0090-9556</identifier><identifier>EISSN: 1521-009X</identifier><identifier>DOI: 10.1124/dmd.117.075531</identifier><identifier>PMID: 28576766</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Area Under Curve ; Bile ; Bile acids ; Bile Acids and Salts - blood ; Biological Transport - drug effects ; Biomarkers ; Biomarkers - blood ; Cell Line ; Change detection ; Coproporphyrins - blood ; Dehydroepiandrosterone ; Dehydroepiandrosterone sulfate ; Dehydroepiandrosterone Sulfate - blood ; Drug Interactions - physiology ; Fatty acids ; Healthy Volunteers ; HEK293 Cells ; Humans ; Inhibition ; Male ; Middle Aged ; Organic Anion Transporters - antagonists & inhibitors ; Organic anion transporting polypeptide ; Palmitic Acids - blood ; Pharmacokinetics ; Pharmacology ; Probes ; Rifampin ; Rifampin - pharmacology ; Rosuvastatin Calcium - pharmacology ; Statistical analysis ; Statistical methods ; Sulfates ; Young Adult</subject><ispartof>Drug metabolism and disposition, 2017-08, Vol.45 (8), p.908-919</ispartof><rights>2017 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.</rights><rights>Copyright Lippincott Williams & Wilkins Ovid Technologies Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</citedby><cites>FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28576766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Chen, Weiqi</creatorcontrib><creatorcontrib>Drexler, Dieter M.</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Holenarsipur, Vinay K.</creatorcontrib><creatorcontrib>Shields, Eric E.</creatorcontrib><creatorcontrib>Langish, Robert</creatorcontrib><creatorcontrib>Sidik, Kurex</creatorcontrib><creatorcontrib>Gan, Jinping</creatorcontrib><creatorcontrib>Humphreys, W. Griffith</creatorcontrib><creatorcontrib>Marathe, Punit</creatorcontrib><creatorcontrib>Lai, Yurong</creatorcontrib><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><title>Drug metabolism and disposition</title><addtitle>Drug Metab Dispos</addtitle><description>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Area Under Curve</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - blood</subject><subject>Biological Transport - drug effects</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Cell Line</subject><subject>Change detection</subject><subject>Coproporphyrins - blood</subject><subject>Dehydroepiandrosterone</subject><subject>Dehydroepiandrosterone sulfate</subject><subject>Dehydroepiandrosterone Sulfate - blood</subject><subject>Drug Interactions - physiology</subject><subject>Fatty acids</subject><subject>Healthy Volunteers</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Organic Anion Transporters - antagonists & inhibitors</subject><subject>Organic anion transporting polypeptide</subject><subject>Palmitic Acids - blood</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Probes</subject><subject>Rifampin</subject><subject>Rifampin - pharmacology</subject><subject>Rosuvastatin Calcium - pharmacology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sulfates</subject><subject>Young Adult</subject><issn>0090-9556</issn><issn>1521-009X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhyhFZ4sKhWfyZj-OyFBqpqJVYJG6R40y0XpI4tZOF_YH8L6a7BQkk5MM7Hj2eeT1DyEvOlpwL9bbpGwyyJcu0lvwRWXAteMJY8fUxWaCwpNA6PSPPYtwxxpWSxVNyJnKdpVmaLsjPte9HE8zk9kAv96abMfQD9S297UzsDX3nOqAr65p4Qd_D9tAED6MzA2qcIPgB6Oe5a80EF_QKfpgGrBmgcf6YQY5uYAp_pel3N23p2o_Bjz6M20NwQ6TlES5L1Eg_mfANQrz3cbPa3NJy2LraHa25AfuYbtoesHG9AzvF5-RJa7oILx70nHz5cLlZXyXXNx_L9eo6sVJkPMkVqw3PWwO6VUWRZ9KolkuRCp0yvMkilUIxaFpta160acNRUy6skBqPPCdvTnXR-d0Mcap6Fy10HX7Nz7HiBdOZVLkWiL7-B935OQzorhJM5IWSUnGklifK4jRjgLYag-tNOFScVfcLrnDBGGTVacH44NVD2bnuofmD_94oAvkJAJzD3kGoonUwWBx9wFFVjXf_q_0LEJ-1SA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Shen, Hong</creator><creator>Chen, Weiqi</creator><creator>Drexler, Dieter M.</creator><creator>Mandlekar, Sandhya</creator><creator>Holenarsipur, Vinay K.</creator><creator>Shields, Eric E.</creator><creator>Langish, Robert</creator><creator>Sidik, Kurex</creator><creator>Gan, Jinping</creator><creator>Humphreys, W. Griffith</creator><creator>Marathe, Punit</creator><creator>Lai, Yurong</creator><general>Elsevier Inc</general><general>American Society for Pharmacology and Experimental Therapeutics, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</title><author>Shen, Hong ; Chen, Weiqi ; Drexler, Dieter M. ; Mandlekar, Sandhya ; Holenarsipur, Vinay K. ; Shields, Eric E. ; Langish, Robert ; Sidik, Kurex ; Gan, Jinping ; Humphreys, W. Griffith ; Marathe, Punit ; Lai, Yurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-840ba18fae5f499873a4f132625608733963240edf5cb19f6d1cb1612c2353533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Area Under Curve</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - blood</topic><topic>Biological Transport - drug effects</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Cell Line</topic><topic>Change detection</topic><topic>Coproporphyrins - blood</topic><topic>Dehydroepiandrosterone</topic><topic>Dehydroepiandrosterone sulfate</topic><topic>Dehydroepiandrosterone Sulfate - blood</topic><topic>Drug Interactions - physiology</topic><topic>Fatty acids</topic><topic>Healthy Volunteers</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Organic Anion Transporters - antagonists & inhibitors</topic><topic>Organic anion transporting polypeptide</topic><topic>Palmitic Acids - blood</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Probes</topic><topic>Rifampin</topic><topic>Rifampin - pharmacology</topic><topic>Rosuvastatin Calcium - pharmacology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sulfates</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Chen, Weiqi</creatorcontrib><creatorcontrib>Drexler, Dieter M.</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Holenarsipur, Vinay K.</creatorcontrib><creatorcontrib>Shields, Eric E.</creatorcontrib><creatorcontrib>Langish, Robert</creatorcontrib><creatorcontrib>Sidik, Kurex</creatorcontrib><creatorcontrib>Gan, Jinping</creatorcontrib><creatorcontrib>Humphreys, W. Griffith</creatorcontrib><creatorcontrib>Marathe, Punit</creatorcontrib><creatorcontrib>Lai, Yurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Drug metabolism and disposition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hong</au><au>Chen, Weiqi</au><au>Drexler, Dieter M.</au><au>Mandlekar, Sandhya</au><au>Holenarsipur, Vinay K.</au><au>Shields, Eric E.</au><au>Langish, Robert</au><au>Sidik, Kurex</au><au>Gan, Jinping</au><au>Humphreys, W. Griffith</au><au>Marathe, Punit</au><au>Lai, Yurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects</atitle><jtitle>Drug metabolism and disposition</jtitle><addtitle>Drug Metab Dispos</addtitle><date>2017-08</date><risdate>2017</risdate><volume>45</volume><issue>8</issue><spage>908</spage><epage>919</epage><pages>908-919</pages><issn>0090-9556</issn><eissn>1521-009X</eissn><abstract>Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0–24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28576766</pmid><doi>10.1124/dmd.117.075531</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-9556 |
ispartof | Drug metabolism and disposition, 2017-08, Vol.45 (8), p.908-919 |
issn | 0090-9556 1521-009X |
language | eng |
recordid | cdi_proquest_miscellaneous_1905734852 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adolescent Adult Area Under Curve Bile Bile acids Bile Acids and Salts - blood Biological Transport - drug effects Biomarkers Biomarkers - blood Cell Line Change detection Coproporphyrins - blood Dehydroepiandrosterone Dehydroepiandrosterone sulfate Dehydroepiandrosterone Sulfate - blood Drug Interactions - physiology Fatty acids Healthy Volunteers HEK293 Cells Humans Inhibition Male Middle Aged Organic Anion Transporters - antagonists & inhibitors Organic anion transporting polypeptide Palmitic Acids - blood Pharmacokinetics Pharmacology Probes Rifampin Rifampin - pharmacology Rosuvastatin Calcium - pharmacology Statistical analysis Statistical methods Sulfates Young Adult |
title | Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Evaluation%20of%20Plasma%20Bile%20Acids,%20Dehydroepiandrosterone%20Sulfate,%20Hexadecanedioate,%20and%20Tetradecanedioate%20with%20Coproporphyrins%20I%20and%20III%20as%20Markers%20of%20OATP%20Inhibition%20in%20Healthy%20Subjects&rft.jtitle=Drug%20metabolism%20and%20disposition&rft.au=Shen,%20Hong&rft.date=2017-08&rft.volume=45&rft.issue=8&rft.spage=908&rft.epage=919&rft.pages=908-919&rft.issn=0090-9556&rft.eissn=1521-009X&rft_id=info:doi/10.1124/dmd.117.075531&rft_dat=%3Cproquest_cross%3E1905734852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2028943341&rft_id=info:pmid/28576766&rft_els_id=S0090955624053868&rfr_iscdi=true |