DeepSite: protein-binding site predictor using 3D-convolutional neural networks

An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-10, Vol.33 (19), p.3036-3042
Hauptverfasser: Jiménez, J, Doerr, S, Martínez-Rosell, G, Rose, A S, De Fabritiis, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3042
container_issue 19
container_start_page 3036
container_title Bioinformatics (Oxford, England)
container_volume 33
creator Jiménez, J
Doerr, S
Martínez-Rosell, G
Rose, A S
De Fabritiis, G
description An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btx350
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1905734783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905734783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-44d66ca32b6bfae249000af71c111f93ef50ed4c47bd3a900cb9de6bcf71e6203</originalsourceid><addsrcrecordid>eNpVUMtOwzAQtBCIlsIngHLkEmrHdh7cUMtLqtQDcI5sZ4MMiV1sh8Lf49JSidOsZmd2R4PQOcFXBFd0KrXVprWuF0ErP5Xhi3J8gMaE5kXKSkIO9zOmI3Ti_RvGmGOeH6NRVvKCk5KM0XIOsHrSAa6TlbMBtEmlNo02r4mPbCSh0SpYlwx-Q9J5qqz5tN0QtDWiSwwM7hfC2rp3f4qOWtF5ONvhBL3c3T7PHtLF8v5xdrNIFcuykDLW5LkSNJO5bAVkrIrhRFsQRQhpKwotx9AwxQrZUBGXSlYN5FJFCeQZphN0ub0bU38M4EPda6-g64QBO_iaVJgXlBUljVK-lSpnvXfQ1iune-G-a4LrTZf1_y7rbZfRd7F7Mcgemr3rrzz6A0Zed0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905734783</pqid></control><display><type>article</type><title>DeepSite: protein-binding site predictor using 3D-convolutional neural networks</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Jiménez, J ; Doerr, S ; Martínez-Rosell, G ; Rose, A S ; De Fabritiis, G</creator><creatorcontrib>Jiménez, J ; Doerr, S ; Martínez-Rosell, G ; Rose, A S ; De Fabritiis, G</creatorcontrib><description>An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx350</identifier><identifier>PMID: 28575181</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Binding Sites ; Drug Design ; Machine Learning ; Neural Networks, Computer ; Protein Conformation ; Proteins - chemistry ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2017-10, Vol.33 (19), p.3036-3042</ispartof><rights>The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-44d66ca32b6bfae249000af71c111f93ef50ed4c47bd3a900cb9de6bcf71e6203</citedby><cites>FETCH-LOGICAL-c422t-44d66ca32b6bfae249000af71c111f93ef50ed4c47bd3a900cb9de6bcf71e6203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28575181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiménez, J</creatorcontrib><creatorcontrib>Doerr, S</creatorcontrib><creatorcontrib>Martínez-Rosell, G</creatorcontrib><creatorcontrib>Rose, A S</creatorcontrib><creatorcontrib>De Fabritiis, G</creatorcontrib><title>DeepSite: protein-binding site predictor using 3D-convolutional neural networks</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Binding Sites</subject><subject>Drug Design</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtOwzAQtBCIlsIngHLkEmrHdh7cUMtLqtQDcI5sZ4MMiV1sh8Lf49JSidOsZmd2R4PQOcFXBFd0KrXVprWuF0ErP5Xhi3J8gMaE5kXKSkIO9zOmI3Ti_RvGmGOeH6NRVvKCk5KM0XIOsHrSAa6TlbMBtEmlNo02r4mPbCSh0SpYlwx-Q9J5qqz5tN0QtDWiSwwM7hfC2rp3f4qOWtF5ONvhBL3c3T7PHtLF8v5xdrNIFcuykDLW5LkSNJO5bAVkrIrhRFsQRQhpKwotx9AwxQrZUBGXSlYN5FJFCeQZphN0ub0bU38M4EPda6-g64QBO_iaVJgXlBUljVK-lSpnvXfQ1iune-G-a4LrTZf1_y7rbZfRd7F7Mcgemr3rrzz6A0Zed0w</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Jiménez, J</creator><creator>Doerr, S</creator><creator>Martínez-Rosell, G</creator><creator>Rose, A S</creator><creator>De Fabritiis, G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>DeepSite: protein-binding site predictor using 3D-convolutional neural networks</title><author>Jiménez, J ; Doerr, S ; Martínez-Rosell, G ; Rose, A S ; De Fabritiis, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-44d66ca32b6bfae249000af71c111f93ef50ed4c47bd3a900cb9de6bcf71e6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Binding Sites</topic><topic>Drug Design</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez, J</creatorcontrib><creatorcontrib>Doerr, S</creatorcontrib><creatorcontrib>Martínez-Rosell, G</creatorcontrib><creatorcontrib>Rose, A S</creatorcontrib><creatorcontrib>De Fabritiis, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez, J</au><au>Doerr, S</au><au>Martínez-Rosell, G</au><au>Rose, A S</au><au>De Fabritiis, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepSite: protein-binding site predictor using 3D-convolutional neural networks</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>33</volume><issue>19</issue><spage>3036</spage><epage>3042</epage><pages>3036-3042</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>28575181</pmid><doi>10.1093/bioinformatics/btx350</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2017-10, Vol.33 (19), p.3036-3042
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_1905734783
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Binding Sites
Drug Design
Machine Learning
Neural Networks, Computer
Protein Conformation
Proteins - chemistry
Software
title DeepSite: protein-binding site predictor using 3D-convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepSite:%20protein-binding%20site%20predictor%20using%203D-convolutional%20neural%20networks&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Jim%C3%A9nez,%20J&rft.date=2017-10-01&rft.volume=33&rft.issue=19&rft.spage=3036&rft.epage=3042&rft.pages=3036-3042&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx350&rft_dat=%3Cproquest_cross%3E1905734783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905734783&rft_id=info:pmid/28575181&rfr_iscdi=true