Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution
Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties s...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2017-08, Vol.38 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Macromolecular rapid communications. |
container_volume | 38 |
creator | Chung, Justin J. Sum, Brian S. T. Li, Siwei Stevens, Molly M. Georgiou, Theoni K. Jones, Julian R. |
description | Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n‐butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.
Osteoblast precursor cells adhere on a methyl‐methacrylate‐based hybrid, while they cannot adhere on more flexible n‐butyl methacrylate‐ and methylacrylate‐based hybrids. Stiffness and hydrophobicity of the hybrids are critical properties for cell attachment and biomaterials design. The copolymer of methyl methacrylate and 3‐(trimethoxysilyl) propyl methacrylate is a promising polymer source of hybrids for bone substitute application. |
doi_str_mv | 10.1002/marc.201700168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904903455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904903455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-c48cf9300e446ab7e2f2f6cd86b4288bbe32f0f30010d808c2a1fc1bb18376b13</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnBibGytXj0aEi9edvsC84c5rpPamrSxsXqeAPOSpZkZVmBi5qQfwc_YTyLNrm3ixQu8hx9PgIeQNwzWDICfjSqYNQdWA7BKPiMnrORsJRpeP88zcL5iQlTH5GWMdwAgC-AvyDGXZVUUDZyQn-fWoknUW9r60U9-xBCpn-jNdonOqIHeBL_DkBxGqqaetjgMdJOSMtsRp0STp7duyPL-1-9rTFtlwjKohGebw0AvFx1cH6n1gX7wE9LbWcfk0pycn16RI6uGiK8P-yn59vH8a3u5uvp88andXK1MwYTMqzS2EQBYFJXSNXLLbWV6WemCS6k1Cm7BZsCglyANV8wapjWToq40E6fk_T53F_z3GWPqRhdNfoua0M-xYw3k_xBFWWb67h965-cw5dtlxcuSlaxuslrvlQk-xoC22wWX21g6Bt1DNd1DNd1jNfnA20PsrEfsH_nfLjJo9uCHG3D5T1x3vfnSPoX_AdWanJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925515179</pqid></control><display><type>article</type><title>Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Chung, Justin J. ; Sum, Brian S. T. ; Li, Siwei ; Stevens, Molly M. ; Georgiou, Theoni K. ; Jones, Julian R.</creator><creatorcontrib>Chung, Justin J. ; Sum, Brian S. T. ; Li, Siwei ; Stevens, Molly M. ; Georgiou, Theoni K. ; Jones, Julian R.</creatorcontrib><description>Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n‐butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.
Osteoblast precursor cells adhere on a methyl‐methacrylate‐based hybrid, while they cannot adhere on more flexible n‐butyl methacrylate‐ and methylacrylate‐based hybrids. Stiffness and hydrophobicity of the hybrids are critical properties for cell attachment and biomaterials design. The copolymer of methyl methacrylate and 3‐(trimethoxysilyl) propyl methacrylate is a promising polymer source of hybrids for bone substitute application.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201700168</identifier><identifier>PMID: 28564490</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylates - chemistry ; Acrylics ; Addition polymerization ; bioactive glass ; Bone healing ; Bone Substitutes - chemistry ; Bone Substitutes - metabolism ; Bone Substitutes - standards ; Cell adhesion ; Chain transfer ; Chains (polymeric) ; Chemical industry ; Copolymers ; Covalence ; Hybrids ; Hydrophobicity ; Materials selection ; Mechanical properties ; Methacrylates - chemistry ; Osteoblasts - metabolism ; Physical properties ; Plastic deformation ; Plastics ; Polymerization ; Polymers - chemistry ; Polymethyl methacrylate ; RAFT ; Silica ; Silicon dioxide ; Silicon Dioxide - chemistry ; sol–gel ; Stiffness ; Strain ; TMSPMA</subject><ispartof>Macromolecular rapid communications., 2017-08, Vol.38 (15), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-c48cf9300e446ab7e2f2f6cd86b4288bbe32f0f30010d808c2a1fc1bb18376b13</citedby><cites>FETCH-LOGICAL-c4138-c48cf9300e446ab7e2f2f6cd86b4288bbe32f0f30010d808c2a1fc1bb18376b13</cites><orcidid>0000-0002-2647-8024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201700168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201700168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28564490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Justin J.</creatorcontrib><creatorcontrib>Sum, Brian S. T.</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><creatorcontrib>Georgiou, Theoni K.</creatorcontrib><creatorcontrib>Jones, Julian R.</creatorcontrib><title>Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n‐butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.
Osteoblast precursor cells adhere on a methyl‐methacrylate‐based hybrid, while they cannot adhere on more flexible n‐butyl methacrylate‐ and methylacrylate‐based hybrids. Stiffness and hydrophobicity of the hybrids are critical properties for cell attachment and biomaterials design. The copolymer of methyl methacrylate and 3‐(trimethoxysilyl) propyl methacrylate is a promising polymer source of hybrids for bone substitute application.</description><subject>Acrylates - chemistry</subject><subject>Acrylics</subject><subject>Addition polymerization</subject><subject>bioactive glass</subject><subject>Bone healing</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - metabolism</subject><subject>Bone Substitutes - standards</subject><subject>Cell adhesion</subject><subject>Chain transfer</subject><subject>Chains (polymeric)</subject><subject>Chemical industry</subject><subject>Copolymers</subject><subject>Covalence</subject><subject>Hybrids</subject><subject>Hydrophobicity</subject><subject>Materials selection</subject><subject>Mechanical properties</subject><subject>Methacrylates - chemistry</subject><subject>Osteoblasts - metabolism</subject><subject>Physical properties</subject><subject>Plastic deformation</subject><subject>Plastics</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Polymethyl methacrylate</subject><subject>RAFT</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>sol–gel</subject><subject>Stiffness</subject><subject>Strain</subject><subject>TMSPMA</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9vFCEYBnBibGytXj0aEi9edvsC84c5rpPamrSxsXqeAPOSpZkZVmBi5qQfwc_YTyLNrm3ixQu8hx9PgIeQNwzWDICfjSqYNQdWA7BKPiMnrORsJRpeP88zcL5iQlTH5GWMdwAgC-AvyDGXZVUUDZyQn-fWoknUW9r60U9-xBCpn-jNdonOqIHeBL_DkBxGqqaetjgMdJOSMtsRp0STp7duyPL-1-9rTFtlwjKohGebw0AvFx1cH6n1gX7wE9LbWcfk0pycn16RI6uGiK8P-yn59vH8a3u5uvp88andXK1MwYTMqzS2EQBYFJXSNXLLbWV6WemCS6k1Cm7BZsCglyANV8wapjWToq40E6fk_T53F_z3GWPqRhdNfoua0M-xYw3k_xBFWWb67h965-cw5dtlxcuSlaxuslrvlQk-xoC22wWX21g6Bt1DNd1DNd1jNfnA20PsrEfsH_nfLjJo9uCHG3D5T1x3vfnSPoX_AdWanJ4</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chung, Justin J.</creator><creator>Sum, Brian S. T.</creator><creator>Li, Siwei</creator><creator>Stevens, Molly M.</creator><creator>Georgiou, Theoni K.</creator><creator>Jones, Julian R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2647-8024</orcidid></search><sort><creationdate>201708</creationdate><title>Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution</title><author>Chung, Justin J. ; Sum, Brian S. T. ; Li, Siwei ; Stevens, Molly M. ; Georgiou, Theoni K. ; Jones, Julian R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-c48cf9300e446ab7e2f2f6cd86b4288bbe32f0f30010d808c2a1fc1bb18376b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrylates - chemistry</topic><topic>Acrylics</topic><topic>Addition polymerization</topic><topic>bioactive glass</topic><topic>Bone healing</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - metabolism</topic><topic>Bone Substitutes - standards</topic><topic>Cell adhesion</topic><topic>Chain transfer</topic><topic>Chains (polymeric)</topic><topic>Chemical industry</topic><topic>Copolymers</topic><topic>Covalence</topic><topic>Hybrids</topic><topic>Hydrophobicity</topic><topic>Materials selection</topic><topic>Mechanical properties</topic><topic>Methacrylates - chemistry</topic><topic>Osteoblasts - metabolism</topic><topic>Physical properties</topic><topic>Plastic deformation</topic><topic>Plastics</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Polymethyl methacrylate</topic><topic>RAFT</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>sol–gel</topic><topic>Stiffness</topic><topic>Strain</topic><topic>TMSPMA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Justin J.</creatorcontrib><creatorcontrib>Sum, Brian S. T.</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><creatorcontrib>Georgiou, Theoni K.</creatorcontrib><creatorcontrib>Jones, Julian R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Justin J.</au><au>Sum, Brian S. T.</au><au>Li, Siwei</au><au>Stevens, Molly M.</au><au>Georgiou, Theoni K.</au><au>Jones, Julian R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2017-08</date><risdate>2017</risdate><volume>38</volume><issue>15</issue><epage>n/a</epage><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n‐butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.
Osteoblast precursor cells adhere on a methyl‐methacrylate‐based hybrid, while they cannot adhere on more flexible n‐butyl methacrylate‐ and methylacrylate‐based hybrids. Stiffness and hydrophobicity of the hybrids are critical properties for cell attachment and biomaterials design. The copolymer of methyl methacrylate and 3‐(trimethoxysilyl) propyl methacrylate is a promising polymer source of hybrids for bone substitute application.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28564490</pmid><doi>10.1002/marc.201700168</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2647-8024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2017-08, Vol.38 (15), p.n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904903455 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Acrylates - chemistry Acrylics Addition polymerization bioactive glass Bone healing Bone Substitutes - chemistry Bone Substitutes - metabolism Bone Substitutes - standards Cell adhesion Chain transfer Chains (polymeric) Chemical industry Copolymers Covalence Hybrids Hydrophobicity Materials selection Mechanical properties Methacrylates - chemistry Osteoblasts - metabolism Physical properties Plastic deformation Plastics Polymerization Polymers - chemistry Polymethyl methacrylate RAFT Silica Silicon dioxide Silicon Dioxide - chemistry sol–gel Stiffness Strain TMSPMA |
title | Effect of Comonomers on Physical Properties and Cell Attachment to Silica‐Methacrylate/Acrylate Hybrids for Bone Substitution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Comonomers%20on%20Physical%20Properties%20and%20Cell%20Attachment%20to%20Silica%E2%80%90Methacrylate/Acrylate%20Hybrids%20for%20Bone%20Substitution&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Chung,%20Justin%20J.&rft.date=2017-08&rft.volume=38&rft.issue=15&rft.epage=n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201700168&rft_dat=%3Cproquest_cross%3E1904903455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925515179&rft_id=info:pmid/28564490&rfr_iscdi=true |