Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform

Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2017-09, Vol.6 (9), p.1701-1709
Hauptverfasser: Madison, Andrew C, Royal, Matthew W, Vigneault, Frederic, Chen, Liji, Griffin, Peter B, Horowitz, Mark, Church, George M, Fair, Richard B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1709
container_issue 9
container_start_page 1701
container_title ACS synthetic biology
container_volume 6
creator Madison, Andrew C
Royal, Matthew W
Vigneault, Frederic
Chen, Liji
Griffin, Peter B
Horowitz, Mark
Church, George M
Fair, Richard B
description Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg–1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm–1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
doi_str_mv 10.1021/acssynbio.7b00007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904902282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904902282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-4bf3bffbb228a5f89706db64c1aa4b2e5bcd99999807b5eafc8beac78111c3df3</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnR2Kb2B7gxLN1MhaHztWza-pHUaKJu3EweDBgaZqjAmPTfS21tXPk2kHDuyeMidEnJhJKU3oDwfttxbScFJ3GKEzRMaU6TjOTs9M99gMber3dIlrGMledokJZZXpE8HaL3FwEGuJF4Ib-0kFhZh2d9sC0E2eBHLZzlGgxeGimCsxvrIGjbYd1hwAv9oUN8_MGU6XWjBX42EKKlvUBnCoyX48M5Qm-3y9f5fbJ6unuYz1YJMFaFZMoV40pxnqYlZKqsCpI3PJ8KCjDlqcy4aKrdlKTgmQQlSi5BFCWlVLBGsRG63ns3zn720oe61V5IY6CTtvc1rci0ItGeRpTu0biu906qeuN0C25bU1LvWq2PrdaHVmPm6qDveSubY-K3wwgkeyBm67XtXRd_-4_wG8c1hhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904902282</pqid></control><display><type>article</type><title>Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Madison, Andrew C ; Royal, Matthew W ; Vigneault, Frederic ; Chen, Liji ; Griffin, Peter B ; Horowitz, Mark ; Church, George M ; Fair, Richard B</creator><creatorcontrib>Madison, Andrew C ; Royal, Matthew W ; Vigneault, Frederic ; Chen, Liji ; Griffin, Peter B ; Horowitz, Mark ; Church, George M ; Fair, Richard B</creatorcontrib><description>Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg–1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm–1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.7b00007</identifier><identifier>PMID: 28569062</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electroporation - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli - genetics ; Lab-On-A-Chip Devices ; Microelectrodes ; Robotics - instrumentation ; Signal Processing, Computer-Assisted - instrumentation ; Transfection - instrumentation ; Transformation, Bacterial - genetics</subject><ispartof>ACS synthetic biology, 2017-09, Vol.6 (9), p.1701-1709</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-4bf3bffbb228a5f89706db64c1aa4b2e5bcd99999807b5eafc8beac78111c3df3</citedby><cites>FETCH-LOGICAL-a339t-4bf3bffbb228a5f89706db64c1aa4b2e5bcd99999807b5eafc8beac78111c3df3</cites><orcidid>0000-0003-3245-7542 ; 0000-0002-9163-1558 ; 0000-0002-9456-2754 ; 0000-0003-3535-2076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.7b00007$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.7b00007$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28569062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madison, Andrew C</creatorcontrib><creatorcontrib>Royal, Matthew W</creatorcontrib><creatorcontrib>Vigneault, Frederic</creatorcontrib><creatorcontrib>Chen, Liji</creatorcontrib><creatorcontrib>Griffin, Peter B</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><creatorcontrib>Church, George M</creatorcontrib><creatorcontrib>Fair, Richard B</creatorcontrib><title>Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg–1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm–1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.</description><subject>Electroporation - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli - genetics</subject><subject>Lab-On-A-Chip Devices</subject><subject>Microelectrodes</subject><subject>Robotics - instrumentation</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Transfection - instrumentation</subject><subject>Transformation, Bacterial - genetics</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAyEURYnR2Kb2B7gxLN1MhaHztWza-pHUaKJu3EweDBgaZqjAmPTfS21tXPk2kHDuyeMidEnJhJKU3oDwfttxbScFJ3GKEzRMaU6TjOTs9M99gMber3dIlrGMledokJZZXpE8HaL3FwEGuJF4Ib-0kFhZh2d9sC0E2eBHLZzlGgxeGimCsxvrIGjbYd1hwAv9oUN8_MGU6XWjBX42EKKlvUBnCoyX48M5Qm-3y9f5fbJ6unuYz1YJMFaFZMoV40pxnqYlZKqsCpI3PJ8KCjDlqcy4aKrdlKTgmQQlSi5BFCWlVLBGsRG63ns3zn720oe61V5IY6CTtvc1rci0ItGeRpTu0biu906qeuN0C25bU1LvWq2PrdaHVmPm6qDveSubY-K3wwgkeyBm67XtXRd_-4_wG8c1hhw</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Madison, Andrew C</creator><creator>Royal, Matthew W</creator><creator>Vigneault, Frederic</creator><creator>Chen, Liji</creator><creator>Griffin, Peter B</creator><creator>Horowitz, Mark</creator><creator>Church, George M</creator><creator>Fair, Richard B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3245-7542</orcidid><orcidid>https://orcid.org/0000-0002-9163-1558</orcidid><orcidid>https://orcid.org/0000-0002-9456-2754</orcidid><orcidid>https://orcid.org/0000-0003-3535-2076</orcidid></search><sort><creationdate>20170915</creationdate><title>Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform</title><author>Madison, Andrew C ; Royal, Matthew W ; Vigneault, Frederic ; Chen, Liji ; Griffin, Peter B ; Horowitz, Mark ; Church, George M ; Fair, Richard B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-4bf3bffbb228a5f89706db64c1aa4b2e5bcd99999807b5eafc8beac78111c3df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electroporation - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli - genetics</topic><topic>Lab-On-A-Chip Devices</topic><topic>Microelectrodes</topic><topic>Robotics - instrumentation</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Transfection - instrumentation</topic><topic>Transformation, Bacterial - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madison, Andrew C</creatorcontrib><creatorcontrib>Royal, Matthew W</creatorcontrib><creatorcontrib>Vigneault, Frederic</creatorcontrib><creatorcontrib>Chen, Liji</creatorcontrib><creatorcontrib>Griffin, Peter B</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><creatorcontrib>Church, George M</creatorcontrib><creatorcontrib>Fair, Richard B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madison, Andrew C</au><au>Royal, Matthew W</au><au>Vigneault, Frederic</au><au>Chen, Liji</au><au>Griffin, Peter B</au><au>Horowitz, Mark</au><au>Church, George M</au><au>Fair, Richard B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>6</volume><issue>9</issue><spage>1701</spage><epage>1709</epage><pages>1701-1709</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg–1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm–1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28569062</pmid><doi>10.1021/acssynbio.7b00007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3245-7542</orcidid><orcidid>https://orcid.org/0000-0002-9163-1558</orcidid><orcidid>https://orcid.org/0000-0002-9456-2754</orcidid><orcidid>https://orcid.org/0000-0003-3535-2076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2017-09, Vol.6 (9), p.1701-1709
issn 2161-5063
2161-5063
language eng
recordid cdi_proquest_miscellaneous_1904902282
source MEDLINE; American Chemical Society Journals
subjects Electroporation - instrumentation
Equipment Design
Equipment Failure Analysis
Escherichia coli - genetics
Lab-On-A-Chip Devices
Microelectrodes
Robotics - instrumentation
Signal Processing, Computer-Assisted - instrumentation
Transfection - instrumentation
Transformation, Bacterial - genetics
title Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Device%20for%20Automated%20Microbial%20Electroporation%20in%20a%20Digital%20Microfluidic%20Platform&rft.jtitle=ACS%20synthetic%20biology&rft.au=Madison,%20Andrew%20C&rft.date=2017-09-15&rft.volume=6&rft.issue=9&rft.spage=1701&rft.epage=1709&rft.pages=1701-1709&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.7b00007&rft_dat=%3Cproquest_cross%3E1904902282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904902282&rft_id=info:pmid/28569062&rfr_iscdi=true