An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination
The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seaw...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2016-11, Vol.57 (55), p.26612-26620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26620 |
---|---|
container_issue | 55 |
container_start_page | 26612 |
container_title | Desalination and water treatment |
container_volume | 57 |
creator | Jeon, Jongmin Park, Beomseok Yoon, Yeomin Kim, Suhan |
description | The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature. |
doi_str_mv | 10.1080/19443994.2016.1189701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904251371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624151648</els_id><sourcerecordid>1901762385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMoKOpHEAJevOyaNGmbnGQR_8GCFz2HNJ1olm5TM13Fb2_KqogXnUuG4fdeknmEnHA250yxc66lFFrLecF4Nedc6ZrxHXIwzWdCq2r3R79PjhFXLFcp61IWB2S16GkcxrC2HW0Bw1NP7TCkaN0zjZ76mN5samnEdcSA1PYtTfAKCeF79vzepNDSLHKAOEkogn2zI6TJ0naht2OI_RHZ87ZDOP48D8nj9dXD5e1seX9zd7lYzpxkYpzZkjkuaucK20hZOqa098r7xotGyFqqqiiYY6LSlbLKc1ZLxttGWddUtlaNOCRnW9_8opcN4GjWAR10ne0hbtBwzWRR5iv4f1BeV4VQZUZPf6GruEl9_ojhSjAhNZciU-WWcikiJvBmSHm36d1wZqa8zFdeZsrLfOaVdRdbHeTFvAZIBl2A3kEbErjRtDH84fABn1Cb9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830349143</pqid></control><display><type>article</type><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><source>Alma/SFX Local Collection</source><creator>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</creator><creatorcontrib>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</creatorcontrib><description>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2016.1189701</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Desalination ; Design ; Energy conservation ; Energy consumption ; Environmental impact ; Flow rate ; Flow rates ; Forward osmosis ; Hybrid process ; Marine ; Optimal design approach ; Optimization ; Osmosis ; Recovery ; Reverse osmosis ; Sea water ; Seawater ; Wastewater treatment plants</subject><ispartof>Desalination and water treatment, 2016-11, Vol.57 (55), p.26612-26620</ispartof><rights>2016 Elsevier Inc.</rights><rights>2016 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</citedby><cites>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jeon, Jongmin</creatorcontrib><creatorcontrib>Park, Beomseok</creatorcontrib><creatorcontrib>Yoon, Yeomin</creatorcontrib><creatorcontrib>Kim, Suhan</creatorcontrib><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><title>Desalination and water treatment</title><description>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</description><subject>Desalination</subject><subject>Design</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Environmental impact</subject><subject>Flow rate</subject><subject>Flow rates</subject><subject>Forward osmosis</subject><subject>Hybrid process</subject><subject>Marine</subject><subject>Optimal design approach</subject><subject>Optimization</subject><subject>Osmosis</subject><subject>Recovery</subject><subject>Reverse osmosis</subject><subject>Sea water</subject><subject>Seawater</subject><subject>Wastewater treatment plants</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LxDAQxYMoKOpHEAJevOyaNGmbnGQR_8GCFz2HNJ1olm5TM13Fb2_KqogXnUuG4fdeknmEnHA250yxc66lFFrLecF4Nedc6ZrxHXIwzWdCq2r3R79PjhFXLFcp61IWB2S16GkcxrC2HW0Bw1NP7TCkaN0zjZ76mN5samnEdcSA1PYtTfAKCeF79vzepNDSLHKAOEkogn2zI6TJ0naht2OI_RHZ87ZDOP48D8nj9dXD5e1seX9zd7lYzpxkYpzZkjkuaucK20hZOqa098r7xotGyFqqqiiYY6LSlbLKc1ZLxttGWddUtlaNOCRnW9_8opcN4GjWAR10ne0hbtBwzWRR5iv4f1BeV4VQZUZPf6GruEl9_ojhSjAhNZciU-WWcikiJvBmSHm36d1wZqa8zFdeZsrLfOaVdRdbHeTFvAZIBl2A3kEbErjRtDH84fABn1Cb9g</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Jeon, Jongmin</creator><creator>Park, Beomseok</creator><creator>Yoon, Yeomin</creator><creator>Kim, Suhan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161101</creationdate><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><author>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Desalination</topic><topic>Design</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Environmental impact</topic><topic>Flow rate</topic><topic>Flow rates</topic><topic>Forward osmosis</topic><topic>Hybrid process</topic><topic>Marine</topic><topic>Optimal design approach</topic><topic>Optimization</topic><topic>Osmosis</topic><topic>Recovery</topic><topic>Reverse osmosis</topic><topic>Sea water</topic><topic>Seawater</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Jongmin</creatorcontrib><creatorcontrib>Park, Beomseok</creatorcontrib><creatorcontrib>Yoon, Yeomin</creatorcontrib><creatorcontrib>Kim, Suhan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Jongmin</au><au>Park, Beomseok</au><au>Yoon, Yeomin</au><au>Kim, Suhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>57</volume><issue>55</issue><spage>26612</spage><epage>26620</epage><pages>26612-26620</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2016.1189701</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-3986 |
ispartof | Desalination and water treatment, 2016-11, Vol.57 (55), p.26612-26620 |
issn | 1944-3986 1944-3994 1944-3986 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904251371 |
source | Alma/SFX Local Collection |
subjects | Desalination Design Energy conservation Energy consumption Environmental impact Flow rate Flow rates Forward osmosis Hybrid process Marine Optimal design approach Optimization Osmosis Recovery Reverse osmosis Sea water Seawater Wastewater treatment plants |
title | An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20design%20approach%20of%20forward%20osmosis%20and%20reverse%20osmosis%20hybrid%20process%20for%20seawater%20desalination&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Jeon,%20Jongmin&rft.date=2016-11-01&rft.volume=57&rft.issue=55&rft.spage=26612&rft.epage=26620&rft.pages=26612-26620&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2016.1189701&rft_dat=%3Cproquest_cross%3E1901762385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830349143&rft_id=info:pmid/&rft_els_id=S1944398624151648&rfr_iscdi=true |