An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination

The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seaw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2016-11, Vol.57 (55), p.26612-26620
Hauptverfasser: Jeon, Jongmin, Park, Beomseok, Yoon, Yeomin, Kim, Suhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26620
container_issue 55
container_start_page 26612
container_title Desalination and water treatment
container_volume 57
creator Jeon, Jongmin
Park, Beomseok
Yoon, Yeomin
Kim, Suhan
description The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.
doi_str_mv 10.1080/19443994.2016.1189701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904251371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624151648</els_id><sourcerecordid>1901762385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMoKOpHEAJevOyaNGmbnGQR_8GCFz2HNJ1olm5TM13Fb2_KqogXnUuG4fdeknmEnHA250yxc66lFFrLecF4Nedc6ZrxHXIwzWdCq2r3R79PjhFXLFcp61IWB2S16GkcxrC2HW0Bw1NP7TCkaN0zjZ76mN5samnEdcSA1PYtTfAKCeF79vzepNDSLHKAOEkogn2zI6TJ0naht2OI_RHZ87ZDOP48D8nj9dXD5e1seX9zd7lYzpxkYpzZkjkuaucK20hZOqa098r7xotGyFqqqiiYY6LSlbLKc1ZLxttGWddUtlaNOCRnW9_8opcN4GjWAR10ne0hbtBwzWRR5iv4f1BeV4VQZUZPf6GruEl9_ojhSjAhNZciU-WWcikiJvBmSHm36d1wZqa8zFdeZsrLfOaVdRdbHeTFvAZIBl2A3kEbErjRtDH84fABn1Cb9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830349143</pqid></control><display><type>article</type><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><source>Alma/SFX Local Collection</source><creator>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</creator><creatorcontrib>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</creatorcontrib><description>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2016.1189701</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Desalination ; Design ; Energy conservation ; Energy consumption ; Environmental impact ; Flow rate ; Flow rates ; Forward osmosis ; Hybrid process ; Marine ; Optimal design approach ; Optimization ; Osmosis ; Recovery ; Reverse osmosis ; Sea water ; Seawater ; Wastewater treatment plants</subject><ispartof>Desalination and water treatment, 2016-11, Vol.57 (55), p.26612-26620</ispartof><rights>2016 Elsevier Inc.</rights><rights>2016 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</citedby><cites>FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jeon, Jongmin</creatorcontrib><creatorcontrib>Park, Beomseok</creatorcontrib><creatorcontrib>Yoon, Yeomin</creatorcontrib><creatorcontrib>Kim, Suhan</creatorcontrib><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><title>Desalination and water treatment</title><description>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</description><subject>Desalination</subject><subject>Design</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Environmental impact</subject><subject>Flow rate</subject><subject>Flow rates</subject><subject>Forward osmosis</subject><subject>Hybrid process</subject><subject>Marine</subject><subject>Optimal design approach</subject><subject>Optimization</subject><subject>Osmosis</subject><subject>Recovery</subject><subject>Reverse osmosis</subject><subject>Sea water</subject><subject>Seawater</subject><subject>Wastewater treatment plants</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LxDAQxYMoKOpHEAJevOyaNGmbnGQR_8GCFz2HNJ1olm5TM13Fb2_KqogXnUuG4fdeknmEnHA250yxc66lFFrLecF4Nedc6ZrxHXIwzWdCq2r3R79PjhFXLFcp61IWB2S16GkcxrC2HW0Bw1NP7TCkaN0zjZ76mN5samnEdcSA1PYtTfAKCeF79vzepNDSLHKAOEkogn2zI6TJ0naht2OI_RHZ87ZDOP48D8nj9dXD5e1seX9zd7lYzpxkYpzZkjkuaucK20hZOqa098r7xotGyFqqqiiYY6LSlbLKc1ZLxttGWddUtlaNOCRnW9_8opcN4GjWAR10ne0hbtBwzWRR5iv4f1BeV4VQZUZPf6GruEl9_ojhSjAhNZciU-WWcikiJvBmSHm36d1wZqa8zFdeZsrLfOaVdRdbHeTFvAZIBl2A3kEbErjRtDH84fABn1Cb9g</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Jeon, Jongmin</creator><creator>Park, Beomseok</creator><creator>Yoon, Yeomin</creator><creator>Kim, Suhan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161101</creationdate><title>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</title><author>Jeon, Jongmin ; Park, Beomseok ; Yoon, Yeomin ; Kim, Suhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a50c137cc2ab445c089ff8ffbf3b347486220c036968a8f107401db8acb6a78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Desalination</topic><topic>Design</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Environmental impact</topic><topic>Flow rate</topic><topic>Flow rates</topic><topic>Forward osmosis</topic><topic>Hybrid process</topic><topic>Marine</topic><topic>Optimal design approach</topic><topic>Optimization</topic><topic>Osmosis</topic><topic>Recovery</topic><topic>Reverse osmosis</topic><topic>Sea water</topic><topic>Seawater</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Jongmin</creatorcontrib><creatorcontrib>Park, Beomseok</creatorcontrib><creatorcontrib>Yoon, Yeomin</creatorcontrib><creatorcontrib>Kim, Suhan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Jongmin</au><au>Park, Beomseok</au><au>Yoon, Yeomin</au><au>Kim, Suhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>57</volume><issue>55</issue><spage>26612</spage><epage>26620</epage><pages>26612-26620</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>The forward osmosis (FO) and reverse osmosis (RO) hybrid process uses seawater and wastewater treatment plant effluent as the FO draw solution and feed water, respectively, and the diluted seawater by FO is used as the RO feed water resulting in the less energy consumption than the conventional seawater reverse osmosis applications. This work developed an optimal design approach of the hybrid process by finding the optimal RO recovery and FO permeate flow rate. The optimized RO recovery (e.g. 38.5–66.7% according to the FO permeate flow rate) determined by solving an optimization problem based on the mass balance in the FO-RO hybrid process, minimizes the RO energy consumption (1.86–3.49 kWh/m3 at 25°C and 2.41–3.86 kWh/m3 at 5°C). The RO energy consumption decreases as the RO recovery increases until it reaches an optimal value. The optimal FO permeate flow rate can be defined with three different perspectives: (1) to minimize the RO energy consumption, (2) to minimize the RO feed flow rate, and (3) to minimize the environmental impacts of the concentrate discharge. Thus, the optimal FO permeate flow rate should be determined based on the weights of the three perspectives. The energy saving achieved by the optimal design approach in this work ranges from 37.6 to 46.7% according to the temperature.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2016.1189701</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2016-11, Vol.57 (55), p.26612-26620
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1904251371
source Alma/SFX Local Collection
subjects Desalination
Design
Energy conservation
Energy consumption
Environmental impact
Flow rate
Flow rates
Forward osmosis
Hybrid process
Marine
Optimal design approach
Optimization
Osmosis
Recovery
Reverse osmosis
Sea water
Seawater
Wastewater treatment plants
title An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20design%20approach%20of%20forward%20osmosis%20and%20reverse%20osmosis%20hybrid%20process%20for%20seawater%20desalination&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Jeon,%20Jongmin&rft.date=2016-11-01&rft.volume=57&rft.issue=55&rft.spage=26612&rft.epage=26620&rft.pages=26612-26620&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2016.1189701&rft_dat=%3Cproquest_cross%3E1901762385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830349143&rft_id=info:pmid/&rft_els_id=S1944398624151648&rfr_iscdi=true