Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery

Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g−1). Nevertheless, natural insulating property and large volume variation of red P during cycling resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-04, Vol.29 (16), p.np-n/a
Hauptverfasser: Li, Weihan, Hu, Shuhe, Luo, Xiangyu, Li, Zhongling, Sun, Xizhen, Li, Minsi, Liu, Fanfan, Yu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page np
container_title Advanced materials (Weinheim)
container_volume 29
creator Li, Weihan
Hu, Shuhe
Luo, Xiangyu
Li, Zhongling
Sun, Xizhen
Li, Minsi
Liu, Fanfan
Yu, Yan
description Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g−1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g−1 at 0.15 A g−1 and improved rate capacity (≈450 mAh g−1 at 1 A g−1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life. By confining nanosized amorphous (red P) into a zeolitic imidazolate framework‐8 (ZIF‐8)‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC), the sodium‐storage performance of red P is improved significantly. The superior sodium‐storage performance is mainly attributed to the novel nanosized core/shell structure. The P@N‐MPC holds great promise for practical application in next‐generation high‐energy‐density sodium‐ion batteries.
doi_str_mv 10.1002/adma.201605820
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904248857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870984995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5090-6257437d813fe9342ed778aa77c561a30ad1b0c91aba5eda64f2e0407950eeb83</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhq2qCBbKtccqUi-9ZBk7dmwfw1IoEluq0p4jJ56IoE0c7E2rlTjwCDwjT1JHC1Tiwskz8jefxv4J-UhhTgHYkbGdmTOgOQjF4B2ZUcFoykGL92QGOhOpzrnaI_sh3ACAziHfJXtMMcZzlc3I3cL1TdujTYrO-eHajSH5Gbsf1y7Ezse27ZPl5enj_cMJ-vZPvPs-1W6I1bKtvRucn6YWxleuT0xITHI1DpF1Pil6ZzFpYnXlbDt2cfI8QsdmvUa_-UB2GrMKePh0HpDfp19_Lb6lF5dn54viIq0FaEhzJiTPpFU0a1BnnKGVUhkjZS1yajIwllZQa2oqI9CanDcMgYPUAhArlR2QL1vv4N3tiGFddm2ocbUyPcbVS6qBM66UkG-jSoJWXGsR0c-v0Bs3-j4-JApZNIJkk3C-peJPheCxKQffdsZvSgrlFGE5RVi-RBgHPj1px6pD-4I_ZxYBvQX-tivcvKEri5Nl8V_-D9BSqa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920420727</pqid></control><display><type>article</type><title>Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Weihan ; Hu, Shuhe ; Luo, Xiangyu ; Li, Zhongling ; Sun, Xizhen ; Li, Minsi ; Liu, Fanfan ; Yu, Yan</creator><creatorcontrib>Li, Weihan ; Hu, Shuhe ; Luo, Xiangyu ; Li, Zhongling ; Sun, Xizhen ; Li, Minsi ; Liu, Fanfan ; Yu, Yan</creatorcontrib><description>Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g−1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g−1 at 0.15 A g−1 and improved rate capacity (≈450 mAh g−1 at 1 A g−1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life. By confining nanosized amorphous (red P) into a zeolitic imidazolate framework‐8 (ZIF‐8)‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC), the sodium‐storage performance of red P is improved significantly. The superior sodium‐storage performance is mainly attributed to the novel nanosized core/shell structure. The P@N‐MPC holds great promise for practical application in next‐generation high‐energy‐density sodium‐ion batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201605820</identifier><identifier>PMID: 28224683</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Battery cycles ; Buffers ; Carbon ; Confining ; Electrochemical analysis ; Encapsulation ; Energy storage ; Extreme values ; Fading ; Flux density ; Materials science ; Metal-organic frameworks ; microporous carbon ; Nanostructure ; Nitrogen ; N‐doping ; Phosphorus ; Rechargeable batteries ; red phosphorus ; Sodium ; Sodium-ion batteries ; Storage batteries ; ZIF‐8</subject><ispartof>Advanced materials (Weinheim), 2017-04, Vol.29 (16), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5090-6257437d813fe9342ed778aa77c561a30ad1b0c91aba5eda64f2e0407950eeb83</citedby><cites>FETCH-LOGICAL-c5090-6257437d813fe9342ed778aa77c561a30ad1b0c91aba5eda64f2e0407950eeb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201605820$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201605820$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28224683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Hu, Shuhe</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Li, Zhongling</creatorcontrib><creatorcontrib>Sun, Xizhen</creatorcontrib><creatorcontrib>Li, Minsi</creatorcontrib><creatorcontrib>Liu, Fanfan</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><title>Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g−1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g−1 at 0.15 A g−1 and improved rate capacity (≈450 mAh g−1 at 1 A g−1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life. By confining nanosized amorphous (red P) into a zeolitic imidazolate framework‐8 (ZIF‐8)‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC), the sodium‐storage performance of red P is improved significantly. The superior sodium‐storage performance is mainly attributed to the novel nanosized core/shell structure. The P@N‐MPC holds great promise for practical application in next‐generation high‐energy‐density sodium‐ion batteries.</description><subject>Anodes</subject><subject>Battery cycles</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Confining</subject><subject>Electrochemical analysis</subject><subject>Encapsulation</subject><subject>Energy storage</subject><subject>Extreme values</subject><subject>Fading</subject><subject>Flux density</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>microporous carbon</subject><subject>Nanostructure</subject><subject>Nitrogen</subject><subject>N‐doping</subject><subject>Phosphorus</subject><subject>Rechargeable batteries</subject><subject>red phosphorus</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>ZIF‐8</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhq2qCBbKtccqUi-9ZBk7dmwfw1IoEluq0p4jJ56IoE0c7E2rlTjwCDwjT1JHC1Tiwskz8jefxv4J-UhhTgHYkbGdmTOgOQjF4B2ZUcFoykGL92QGOhOpzrnaI_sh3ACAziHfJXtMMcZzlc3I3cL1TdujTYrO-eHajSH5Gbsf1y7Ezse27ZPl5enj_cMJ-vZPvPs-1W6I1bKtvRucn6YWxleuT0xITHI1DpF1Pil6ZzFpYnXlbDt2cfI8QsdmvUa_-UB2GrMKePh0HpDfp19_Lb6lF5dn54viIq0FaEhzJiTPpFU0a1BnnKGVUhkjZS1yajIwllZQa2oqI9CanDcMgYPUAhArlR2QL1vv4N3tiGFddm2ocbUyPcbVS6qBM66UkG-jSoJWXGsR0c-v0Bs3-j4-JApZNIJkk3C-peJPheCxKQffdsZvSgrlFGE5RVi-RBgHPj1px6pD-4I_ZxYBvQX-tivcvKEri5Nl8V_-D9BSqa8</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Li, Weihan</creator><creator>Hu, Shuhe</creator><creator>Luo, Xiangyu</creator><creator>Li, Zhongling</creator><creator>Sun, Xizhen</creator><creator>Li, Minsi</creator><creator>Liu, Fanfan</creator><creator>Yu, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery</title><author>Li, Weihan ; Hu, Shuhe ; Luo, Xiangyu ; Li, Zhongling ; Sun, Xizhen ; Li, Minsi ; Liu, Fanfan ; Yu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5090-6257437d813fe9342ed778aa77c561a30ad1b0c91aba5eda64f2e0407950eeb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Battery cycles</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Confining</topic><topic>Electrochemical analysis</topic><topic>Encapsulation</topic><topic>Energy storage</topic><topic>Extreme values</topic><topic>Fading</topic><topic>Flux density</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>microporous carbon</topic><topic>Nanostructure</topic><topic>Nitrogen</topic><topic>N‐doping</topic><topic>Phosphorus</topic><topic>Rechargeable batteries</topic><topic>red phosphorus</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>ZIF‐8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Hu, Shuhe</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Li, Zhongling</creatorcontrib><creatorcontrib>Sun, Xizhen</creatorcontrib><creatorcontrib>Li, Minsi</creatorcontrib><creatorcontrib>Liu, Fanfan</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weihan</au><au>Hu, Shuhe</au><au>Luo, Xiangyu</au><au>Li, Zhongling</au><au>Sun, Xizhen</au><au>Li, Minsi</au><au>Liu, Fanfan</au><au>Yu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-04</date><risdate>2017</risdate><volume>29</volume><issue>16</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g−1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g−1 at 0.15 A g−1 and improved rate capacity (≈450 mAh g−1 at 1 A g−1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life. By confining nanosized amorphous (red P) into a zeolitic imidazolate framework‐8 (ZIF‐8)‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC), the sodium‐storage performance of red P is improved significantly. The superior sodium‐storage performance is mainly attributed to the novel nanosized core/shell structure. The P@N‐MPC holds great promise for practical application in next‐generation high‐energy‐density sodium‐ion batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28224683</pmid><doi>10.1002/adma.201605820</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-04, Vol.29 (16), p.np-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1904248857
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Battery cycles
Buffers
Carbon
Confining
Electrochemical analysis
Encapsulation
Energy storage
Extreme values
Fading
Flux density
Materials science
Metal-organic frameworks
microporous carbon
Nanostructure
Nitrogen
N‐doping
Phosphorus
Rechargeable batteries
red phosphorus
Sodium
Sodium-ion batteries
Storage batteries
ZIF‐8
title Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confined%20Amorphous%20Red%20Phosphorus%20in%20MOF%E2%80%90Derived%20N%E2%80%90Doped%20Microporous%20Carbon%20as%20a%20Superior%20Anode%20for%20Sodium%E2%80%90Ion%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Weihan&rft.date=2017-04&rft.volume=29&rft.issue=16&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201605820&rft_dat=%3Cproquest_cross%3E1870984995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920420727&rft_id=info:pmid/28224683&rfr_iscdi=true