On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid

The stability of the conduction regime of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid has been studied. A modified Darcy’s law is utilized to describe the flow in a porous medium. The eigenvalue problem is solved using Chebyshev collocation method and the critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 2017-06, Vol.31 (3), p.221-231
Hauptverfasser: Shankar, B. M., Shivakumara, I. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of the conduction regime of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid has been studied. A modified Darcy’s law is utilized to describe the flow in a porous medium. The eigenvalue problem is solved using Chebyshev collocation method and the critical Darcy–Rayleigh number with respect to the wave number is extracted for different values of physical parameters. Despite the basic state being the same for Newtonian and Oldroyd-B fluids, it is observed that the basic flow is unstable for viscoelastic fluids—a result of contrast compared to Newtonian as well as for power-law fluids. It is found that the viscoelasticity parameters exhibit both stabilizing and destabilizing influence on the system. Increase in the value of strain retardation parameter Λ 2 portrays stabilizing influence on the system while increasing stress relaxation parameter Λ 1 displays an opposite trend. Also, the effect of increasing ratio of heat capacities is to delay the onset of instability. The results for Maxwell fluid obtained as a particular case from the present study indicate that the system is more unstable compared to Oldroyd-B fluid.
ISSN:0935-4964
1432-2250
DOI:10.1007/s00162-016-0415-8