A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces
We consider the problem of minimizing the Willmore energy connected surfaces with prescribed surface area which are confined to a finite container. To this end, we approximate the surface by a phase field function $u$ taking values close to +1 on the inside of the surface and -1 on its outside. The...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2014-01, Vol.46 (2), p.1610-1632 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1632 |
---|---|
container_issue | 2 |
container_start_page | 1610 |
container_title | SIAM journal on mathematical analysis |
container_volume | 46 |
creator | Dondl, Patrick W Mugnai, Luca Roger, Matthias |
description | We consider the problem of minimizing the Willmore energy connected surfaces with prescribed surface area which are confined to a finite container. To this end, we approximate the surface by a phase field function $u$ taking values close to +1 on the inside of the surface and -1 on its outside. The confinement of the surface is now simply given by the domain of definition of $u$. A diffuse interface approximation for the area functional, as well as for the Willmore energy, are well known. We address the topological constraint of connectedness by a nested minimization of two phase fields, the second one being used to identify connected components of the surface. In this article, we provide a proof of Gamma-convergence of our model to the sharp interface limit. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/130921994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904246204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904246204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5dc3338e235d21af4744e51acf08d57218215159d8d724709fc4088f878f16f43</originalsourceid><addsrcrecordid>eNpd0MtKw0AUBuBBFKzVhW8w4EYX0TlzSWaWJbQqVCqouAzjXGxKkqkzyaI-vb2IC1cHfj7OOfwIXQK5BWDFHTCiKCjFj9AIiBJZAYIfoxEhLM-AAzlFZymtCIGcKzJCHxP8vNTJ4VntGoufgnUN9iHifunwYt3Xbf2t-zp0OPh99l43TRuiw9POxc8Nrrt9XDY6pZ0pQ9c50zuLX4botXHpHJ143SR38TvH6G02fS0fsvni_rGczDPDqOgzYQ1jTDrKhKWgPS84dwK08URaUVCQFAQIZaUtKC-I8oYTKb0spIfcczZG14e96xi-Bpf6qq2TcU2jOxeGVIEinPKckh29-kdXYYjd9rtqe0NKJQRhW3VzUCaGlKLz1TrWrY6bCki1a7v6a5v9AHSmbkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518895503</pqid></control><display><type>article</type><title>A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Dondl, Patrick W ; Mugnai, Luca ; Roger, Matthias</creator><creatorcontrib>Dondl, Patrick W ; Mugnai, Luca ; Roger, Matthias</creatorcontrib><description>We consider the problem of minimizing the Willmore energy connected surfaces with prescribed surface area which are confined to a finite container. To this end, we approximate the surface by a phase field function $u$ taking values close to +1 on the inside of the surface and -1 on its outside. The confinement of the surface is now simply given by the domain of definition of $u$. A diffuse interface approximation for the area functional, as well as for the Willmore energy, are well known. We address the topological constraint of connectedness by a nested minimization of two phase fields, the second one being used to identify connected components of the surface. In this article, we provide a proof of Gamma-convergence of our model to the sharp interface limit. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130921994</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Confinement ; Energy ; Mathematical analysis ; Mathematical models ; Minimization ; Optimization ; Surface area ; Topology</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (2), p.1610-1632</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5dc3338e235d21af4744e51acf08d57218215159d8d724709fc4088f878f16f43</citedby><cites>FETCH-LOGICAL-c325t-5dc3338e235d21af4744e51acf08d57218215159d8d724709fc4088f878f16f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids></links><search><creatorcontrib>Dondl, Patrick W</creatorcontrib><creatorcontrib>Mugnai, Luca</creatorcontrib><creatorcontrib>Roger, Matthias</creatorcontrib><title>A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces</title><title>SIAM journal on mathematical analysis</title><description>We consider the problem of minimizing the Willmore energy connected surfaces with prescribed surface area which are confined to a finite container. To this end, we approximate the surface by a phase field function $u$ taking values close to +1 on the inside of the surface and -1 on its outside. The confinement of the surface is now simply given by the domain of definition of $u$. A diffuse interface approximation for the area functional, as well as for the Willmore energy, are well known. We address the topological constraint of connectedness by a nested minimization of two phase fields, the second one being used to identify connected components of the surface. In this article, we provide a proof of Gamma-convergence of our model to the sharp interface limit. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Confinement</subject><subject>Energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Surface area</subject><subject>Topology</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0MtKw0AUBuBBFKzVhW8w4EYX0TlzSWaWJbQqVCqouAzjXGxKkqkzyaI-vb2IC1cHfj7OOfwIXQK5BWDFHTCiKCjFj9AIiBJZAYIfoxEhLM-AAzlFZymtCIGcKzJCHxP8vNTJ4VntGoufgnUN9iHifunwYt3Xbf2t-zp0OPh99l43TRuiw9POxc8Nrrt9XDY6pZ0pQ9c50zuLX4botXHpHJ143SR38TvH6G02fS0fsvni_rGczDPDqOgzYQ1jTDrKhKWgPS84dwK08URaUVCQFAQIZaUtKC-I8oYTKb0spIfcczZG14e96xi-Bpf6qq2TcU2jOxeGVIEinPKckh29-kdXYYjd9rtqe0NKJQRhW3VzUCaGlKLz1TrWrY6bCki1a7v6a5v9AHSmbkg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Dondl, Patrick W</creator><creator>Mugnai, Luca</creator><creator>Roger, Matthias</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces</title><author>Dondl, Patrick W ; Mugnai, Luca ; Roger, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5dc3338e235d21af4744e51acf08d57218215159d8d724709fc4088f878f16f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Confinement</topic><topic>Energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Surface area</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dondl, Patrick W</creatorcontrib><creatorcontrib>Mugnai, Luca</creatorcontrib><creatorcontrib>Roger, Matthias</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dondl, Patrick W</au><au>Mugnai, Luca</au><au>Roger, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>46</volume><issue>2</issue><spage>1610</spage><epage>1632</epage><pages>1610-1632</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We consider the problem of minimizing the Willmore energy connected surfaces with prescribed surface area which are confined to a finite container. To this end, we approximate the surface by a phase field function $u$ taking values close to +1 on the inside of the surface and -1 on its outside. The confinement of the surface is now simply given by the domain of definition of $u$. A diffuse interface approximation for the area functional, as well as for the Willmore energy, are well known. We address the topological constraint of connectedness by a nested minimization of two phase fields, the second one being used to identify connected components of the surface. In this article, we provide a proof of Gamma-convergence of our model to the sharp interface limit. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130921994</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2014-01, Vol.46 (2), p.1610-1632 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904246204 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Confinement Energy Mathematical analysis Mathematical models Minimization Optimization Surface area Topology |
title | A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phase%20Field%20Model%20for%20the%20Optimization%20of%20the%20Willmore%20Energy%20in%20the%20Class%20of%20Connected%20Surfaces&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Dondl,%20Patrick%20W&rft.date=2014-01-01&rft.volume=46&rft.issue=2&rft.spage=1610&rft.epage=1632&rft.pages=1610-1632&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130921994&rft_dat=%3Cproquest_cross%3E1904246204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518895503&rft_id=info:pmid/&rfr_iscdi=true |