Atomic-scale origins of slowness in the cyanobacterial circadian clock
Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-07, Vol.349 (6245), p.312-316 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 6245 |
container_start_page | 312 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 349 |
creator | Abe, Jun Hiyama, Takuya B. Mukaiyama, Atsushi Son, Seyoung Mori, Toshifumi Saito, Shinji Osako, Masato Wolanin, Julie Yamashita, Eiki Kondo, Takao Akiyama, Shuji |
description | Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle. |
doi_str_mv | 10.1126/science.1261040 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904242825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24748585</jstor_id><sourcerecordid>24748585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKtnT8KCFy_bTj42H8dSrAoFL3oOaTbR1G1Sky3Sf-9KiwcvnuaFed6B4UHoGsMEY8KnxQYXrZsMGQODEzTCoJpaEaCnaARAeS1BNOfoopQ1wLBTdIQWsz5tgq2LNZ2rUg5vIZYq-ap06Su6UqoQq_7dVXZvYloZ27scTFfZkK1pg4mV7ZL9uERn3nTFXR3nGL0u7l_mj_Xy-eFpPlvWlnHoa0OMEspLSrEnxGDqJVkJiRWVrcRCOS6FX3FowUvjpJKtMZR7z5SgnPGWjtHd4e42p8-dK73ehGJd15no0q5orIARRiRp_kclSC6UEGpAb_-g67TLcXhEY664Io1q-EBND5TNqZTsvN7msDF5rzHoHwX6qEAfFQyNm0NjXfqUf3HCBJONbOg3NpeDAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696925956</pqid></control><display><type>article</type><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</creator><creatorcontrib>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</creatorcontrib><description>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1261040</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphate ; Adenosines ; Algae ; Biochemistry ; Biological clocks ; Circadian rhythm ; Clocks ; Cyanobacteria ; Kinetics ; Origins ; Peptides ; Proteins</subject><ispartof>Science (American Association for the Advancement of Science), 2015-07, Vol.349 (6245), p.312-316</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</citedby><cites>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24748585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24748585$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Abe, Jun</creatorcontrib><creatorcontrib>Hiyama, Takuya B.</creatorcontrib><creatorcontrib>Mukaiyama, Atsushi</creatorcontrib><creatorcontrib>Son, Seyoung</creatorcontrib><creatorcontrib>Mori, Toshifumi</creatorcontrib><creatorcontrib>Saito, Shinji</creatorcontrib><creatorcontrib>Osako, Masato</creatorcontrib><creatorcontrib>Wolanin, Julie</creatorcontrib><creatorcontrib>Yamashita, Eiki</creatorcontrib><creatorcontrib>Kondo, Takao</creatorcontrib><creatorcontrib>Akiyama, Shuji</creatorcontrib><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><title>Science (American Association for the Advancement of Science)</title><description>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</description><subject>Adenosine triphosphate</subject><subject>Adenosines</subject><subject>Algae</subject><subject>Biochemistry</subject><subject>Biological clocks</subject><subject>Circadian rhythm</subject><subject>Clocks</subject><subject>Cyanobacteria</subject><subject>Kinetics</subject><subject>Origins</subject><subject>Peptides</subject><subject>Proteins</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWKtnT8KCFy_bTj42H8dSrAoFL3oOaTbR1G1Sky3Sf-9KiwcvnuaFed6B4UHoGsMEY8KnxQYXrZsMGQODEzTCoJpaEaCnaARAeS1BNOfoopQ1wLBTdIQWsz5tgq2LNZ2rUg5vIZYq-ap06Su6UqoQq_7dVXZvYloZ27scTFfZkK1pg4mV7ZL9uERn3nTFXR3nGL0u7l_mj_Xy-eFpPlvWlnHoa0OMEspLSrEnxGDqJVkJiRWVrcRCOS6FX3FowUvjpJKtMZR7z5SgnPGWjtHd4e42p8-dK73ehGJd15no0q5orIARRiRp_kclSC6UEGpAb_-g67TLcXhEY664Io1q-EBND5TNqZTsvN7msDF5rzHoHwX6qEAfFQyNm0NjXfqUf3HCBJONbOg3NpeDAg</recordid><startdate>20150717</startdate><enddate>20150717</enddate><creator>Abe, Jun</creator><creator>Hiyama, Takuya B.</creator><creator>Mukaiyama, Atsushi</creator><creator>Son, Seyoung</creator><creator>Mori, Toshifumi</creator><creator>Saito, Shinji</creator><creator>Osako, Masato</creator><creator>Wolanin, Julie</creator><creator>Yamashita, Eiki</creator><creator>Kondo, Takao</creator><creator>Akiyama, Shuji</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150717</creationdate><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><author>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosines</topic><topic>Algae</topic><topic>Biochemistry</topic><topic>Biological clocks</topic><topic>Circadian rhythm</topic><topic>Clocks</topic><topic>Cyanobacteria</topic><topic>Kinetics</topic><topic>Origins</topic><topic>Peptides</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Jun</creatorcontrib><creatorcontrib>Hiyama, Takuya B.</creatorcontrib><creatorcontrib>Mukaiyama, Atsushi</creatorcontrib><creatorcontrib>Son, Seyoung</creatorcontrib><creatorcontrib>Mori, Toshifumi</creatorcontrib><creatorcontrib>Saito, Shinji</creatorcontrib><creatorcontrib>Osako, Masato</creatorcontrib><creatorcontrib>Wolanin, Julie</creatorcontrib><creatorcontrib>Yamashita, Eiki</creatorcontrib><creatorcontrib>Kondo, Takao</creatorcontrib><creatorcontrib>Akiyama, Shuji</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Jun</au><au>Hiyama, Takuya B.</au><au>Mukaiyama, Atsushi</au><au>Son, Seyoung</au><au>Mori, Toshifumi</au><au>Saito, Shinji</au><au>Osako, Masato</au><au>Wolanin, Julie</au><au>Yamashita, Eiki</au><au>Kondo, Takao</au><au>Akiyama, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale origins of slowness in the cyanobacterial circadian clock</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-07-17</date><risdate>2015</risdate><volume>349</volume><issue>6245</issue><spage>312</spage><epage>316</epage><pages>312-316</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1261040</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-07, Vol.349 (6245), p.312-316 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904242825 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Adenosine triphosphate Adenosines Algae Biochemistry Biological clocks Circadian rhythm Clocks Cyanobacteria Kinetics Origins Peptides Proteins |
title | Atomic-scale origins of slowness in the cyanobacterial circadian clock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20origins%20of%20slowness%20in%20the%20cyanobacterial%20circadian%20clock&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Abe,%20Jun&rft.date=2015-07-17&rft.volume=349&rft.issue=6245&rft.spage=312&rft.epage=316&rft.pages=312-316&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1261040&rft_dat=%3Cjstor_proqu%3E24748585%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696925956&rft_id=info:pmid/&rft_jstor_id=24748585&rfr_iscdi=true |