Atomic-scale origins of slowness in the cyanobacterial circadian clock

Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-07, Vol.349 (6245), p.312-316
Hauptverfasser: Abe, Jun, Hiyama, Takuya B., Mukaiyama, Atsushi, Son, Seyoung, Mori, Toshifumi, Saito, Shinji, Osako, Masato, Wolanin, Julie, Yamashita, Eiki, Kondo, Takao, Akiyama, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 6245
container_start_page 312
container_title Science (American Association for the Advancement of Science)
container_volume 349
creator Abe, Jun
Hiyama, Takuya B.
Mukaiyama, Atsushi
Son, Seyoung
Mori, Toshifumi
Saito, Shinji
Osako, Masato
Wolanin, Julie
Yamashita, Eiki
Kondo, Takao
Akiyama, Shuji
description Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.
doi_str_mv 10.1126/science.1261040
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904242825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24748585</jstor_id><sourcerecordid>24748585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKtnT8KCFy_bTj42H8dSrAoFL3oOaTbR1G1Sky3Sf-9KiwcvnuaFed6B4UHoGsMEY8KnxQYXrZsMGQODEzTCoJpaEaCnaARAeS1BNOfoopQ1wLBTdIQWsz5tgq2LNZ2rUg5vIZYq-ap06Su6UqoQq_7dVXZvYloZ27scTFfZkK1pg4mV7ZL9uERn3nTFXR3nGL0u7l_mj_Xy-eFpPlvWlnHoa0OMEspLSrEnxGDqJVkJiRWVrcRCOS6FX3FowUvjpJKtMZR7z5SgnPGWjtHd4e42p8-dK73ehGJd15no0q5orIARRiRp_kclSC6UEGpAb_-g67TLcXhEY664Io1q-EBND5TNqZTsvN7msDF5rzHoHwX6qEAfFQyNm0NjXfqUf3HCBJONbOg3NpeDAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696925956</pqid></control><display><type>article</type><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</creator><creatorcontrib>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</creatorcontrib><description>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1261040</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphate ; Adenosines ; Algae ; Biochemistry ; Biological clocks ; Circadian rhythm ; Clocks ; Cyanobacteria ; Kinetics ; Origins ; Peptides ; Proteins</subject><ispartof>Science (American Association for the Advancement of Science), 2015-07, Vol.349 (6245), p.312-316</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</citedby><cites>FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24748585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24748585$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Abe, Jun</creatorcontrib><creatorcontrib>Hiyama, Takuya B.</creatorcontrib><creatorcontrib>Mukaiyama, Atsushi</creatorcontrib><creatorcontrib>Son, Seyoung</creatorcontrib><creatorcontrib>Mori, Toshifumi</creatorcontrib><creatorcontrib>Saito, Shinji</creatorcontrib><creatorcontrib>Osako, Masato</creatorcontrib><creatorcontrib>Wolanin, Julie</creatorcontrib><creatorcontrib>Yamashita, Eiki</creatorcontrib><creatorcontrib>Kondo, Takao</creatorcontrib><creatorcontrib>Akiyama, Shuji</creatorcontrib><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><title>Science (American Association for the Advancement of Science)</title><description>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</description><subject>Adenosine triphosphate</subject><subject>Adenosines</subject><subject>Algae</subject><subject>Biochemistry</subject><subject>Biological clocks</subject><subject>Circadian rhythm</subject><subject>Clocks</subject><subject>Cyanobacteria</subject><subject>Kinetics</subject><subject>Origins</subject><subject>Peptides</subject><subject>Proteins</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWKtnT8KCFy_bTj42H8dSrAoFL3oOaTbR1G1Sky3Sf-9KiwcvnuaFed6B4UHoGsMEY8KnxQYXrZsMGQODEzTCoJpaEaCnaARAeS1BNOfoopQ1wLBTdIQWsz5tgq2LNZ2rUg5vIZYq-ap06Su6UqoQq_7dVXZvYloZ27scTFfZkK1pg4mV7ZL9uERn3nTFXR3nGL0u7l_mj_Xy-eFpPlvWlnHoa0OMEspLSrEnxGDqJVkJiRWVrcRCOS6FX3FowUvjpJKtMZR7z5SgnPGWjtHd4e42p8-dK73ehGJd15no0q5orIARRiRp_kclSC6UEGpAb_-g67TLcXhEY664Io1q-EBND5TNqZTsvN7msDF5rzHoHwX6qEAfFQyNm0NjXfqUf3HCBJONbOg3NpeDAg</recordid><startdate>20150717</startdate><enddate>20150717</enddate><creator>Abe, Jun</creator><creator>Hiyama, Takuya B.</creator><creator>Mukaiyama, Atsushi</creator><creator>Son, Seyoung</creator><creator>Mori, Toshifumi</creator><creator>Saito, Shinji</creator><creator>Osako, Masato</creator><creator>Wolanin, Julie</creator><creator>Yamashita, Eiki</creator><creator>Kondo, Takao</creator><creator>Akiyama, Shuji</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150717</creationdate><title>Atomic-scale origins of slowness in the cyanobacterial circadian clock</title><author>Abe, Jun ; Hiyama, Takuya B. ; Mukaiyama, Atsushi ; Son, Seyoung ; Mori, Toshifumi ; Saito, Shinji ; Osako, Masato ; Wolanin, Julie ; Yamashita, Eiki ; Kondo, Takao ; Akiyama, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-a2a979f8331f22a13f82b781938d8179e687fb60d0f8ae898daa36ff4973646d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosines</topic><topic>Algae</topic><topic>Biochemistry</topic><topic>Biological clocks</topic><topic>Circadian rhythm</topic><topic>Clocks</topic><topic>Cyanobacteria</topic><topic>Kinetics</topic><topic>Origins</topic><topic>Peptides</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Jun</creatorcontrib><creatorcontrib>Hiyama, Takuya B.</creatorcontrib><creatorcontrib>Mukaiyama, Atsushi</creatorcontrib><creatorcontrib>Son, Seyoung</creatorcontrib><creatorcontrib>Mori, Toshifumi</creatorcontrib><creatorcontrib>Saito, Shinji</creatorcontrib><creatorcontrib>Osako, Masato</creatorcontrib><creatorcontrib>Wolanin, Julie</creatorcontrib><creatorcontrib>Yamashita, Eiki</creatorcontrib><creatorcontrib>Kondo, Takao</creatorcontrib><creatorcontrib>Akiyama, Shuji</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Jun</au><au>Hiyama, Takuya B.</au><au>Mukaiyama, Atsushi</au><au>Son, Seyoung</au><au>Mori, Toshifumi</au><au>Saito, Shinji</au><au>Osako, Masato</au><au>Wolanin, Julie</au><au>Yamashita, Eiki</au><au>Kondo, Takao</au><au>Akiyama, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale origins of slowness in the cyanobacterial circadian clock</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-07-17</date><risdate>2015</risdate><volume>349</volume><issue>6245</issue><spage>312</spage><epage>316</epage><pages>312-316</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1261040</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-07, Vol.349 (6245), p.312-316
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904242825
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Adenosine triphosphate
Adenosines
Algae
Biochemistry
Biological clocks
Circadian rhythm
Clocks
Cyanobacteria
Kinetics
Origins
Peptides
Proteins
title Atomic-scale origins of slowness in the cyanobacterial circadian clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20origins%20of%20slowness%20in%20the%20cyanobacterial%20circadian%20clock&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Abe,%20Jun&rft.date=2015-07-17&rft.volume=349&rft.issue=6245&rft.spage=312&rft.epage=316&rft.pages=312-316&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1261040&rft_dat=%3Cjstor_proqu%3E24748585%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696925956&rft_id=info:pmid/&rft_jstor_id=24748585&rfr_iscdi=true