Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors

The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-04, Vol.89 (8), p.4480-4487
Hauptverfasser: Vandezande, Wouter, Janssen, Kris P. F, Delport, Filip, Ameloot, Rob, De Vos, Dirk E, Lammertyn, Jeroen, Roeffaers, Maarten B. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4487
container_issue 8
container_start_page 4480
container_title Analytical chemistry (Washington)
container_volume 89
creator Vandezande, Wouter
Janssen, Kris P. F
Delport, Filip
Ameloot, Rob
De Vos, Dirk E
Lammertyn, Jeroen
Roeffaers, Maarten B. J
description The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.
doi_str_mv 10.1021/acs.analchem.6b04510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904242607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904242607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-74f855f7b5c430e3626b4ab5657242c406cccb33fe01a3ef9d5ee637587434983</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi1ERYfCGyBkiQ2bTK9_kyyrwgBSq1YU2EY3nhua4sSDnYDo0-PpTKnEAla27POda-tj7IWApQApjtGlJY7o3TUNS9uCNgIesYUwEgpbVfIxWwCAKmQJcMiepnQDIAQI-4QdykqJSmpYsNtLjFPiG4r8vPe-DyN_QxO5absLHT_xLlwHz7_gJsTEf_TIz2lCzy_iVxx7x1cRB_oZ4je-mse7GPr-ltb8ao4dOuKXHtOQZR8p5bsxn1zRmLLsGTvo0Cd6vl-P2OfV20-n74uzi3cfTk_OCtS1nIpSd5UxXdkapxWQstK2GltjTSm1dBqsc65VqiMQqKir14bIqtJUpVa6rtQRe73zbmL4PlOamqFPjrzHkcKcGlGDziYL5f_Rqqzz3ErIjL76C70Jc8yf31K1rPObjc6U3lEuhpQidc0m9gPGX42AZltjk2ts7mts9jXm2Mu9fG4HWv8J3feWAdgB2_jD4H85fwOF36vl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892985554</pqid></control><display><type>article</type><title>Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors</title><source>American Chemical Society Journals</source><creator>Vandezande, Wouter ; Janssen, Kris P. F ; Delport, Filip ; Ameloot, Rob ; De Vos, Dirk E ; Lammertyn, Jeroen ; Roeffaers, Maarten B. J</creator><creatorcontrib>Vandezande, Wouter ; Janssen, Kris P. F ; Delport, Filip ; Ameloot, Rob ; De Vos, Dirk E ; Lammertyn, Jeroen ; Roeffaers, Maarten B. J</creatorcontrib><description>The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b04510</identifier><identifier>PMID: 28318240</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alcohols ; Detection ; Kinetics ; Metal-organic frameworks ; Methanol ; Methyl alcohol ; Molecules ; Nucleation ; Plasmons ; Recognition ; Sensors ; VOCs ; Volatile organic compounds</subject><ispartof>Analytical chemistry (Washington), 2017-04, Vol.89 (8), p.4480-4487</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-74f855f7b5c430e3626b4ab5657242c406cccb33fe01a3ef9d5ee637587434983</citedby><cites>FETCH-LOGICAL-a492t-74f855f7b5c430e3626b4ab5657242c406cccb33fe01a3ef9d5ee637587434983</cites><orcidid>0000-0003-3178-5480 ; 0000-0001-8143-6794 ; 0000-0001-6582-6514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b04510$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b04510$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28318240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandezande, Wouter</creatorcontrib><creatorcontrib>Janssen, Kris P. F</creatorcontrib><creatorcontrib>Delport, Filip</creatorcontrib><creatorcontrib>Ameloot, Rob</creatorcontrib><creatorcontrib>De Vos, Dirk E</creatorcontrib><creatorcontrib>Lammertyn, Jeroen</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J</creatorcontrib><title>Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.</description><subject>Alcohols</subject><subject>Detection</subject><subject>Kinetics</subject><subject>Metal-organic frameworks</subject><subject>Methanol</subject><subject>Methyl alcohol</subject><subject>Molecules</subject><subject>Nucleation</subject><subject>Plasmons</subject><subject>Recognition</subject><subject>Sensors</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi1ERYfCGyBkiQ2bTK9_kyyrwgBSq1YU2EY3nhua4sSDnYDo0-PpTKnEAla27POda-tj7IWApQApjtGlJY7o3TUNS9uCNgIesYUwEgpbVfIxWwCAKmQJcMiepnQDIAQI-4QdykqJSmpYsNtLjFPiG4r8vPe-DyN_QxO5absLHT_xLlwHz7_gJsTEf_TIz2lCzy_iVxx7x1cRB_oZ4je-mse7GPr-ltb8ao4dOuKXHtOQZR8p5bsxn1zRmLLsGTvo0Cd6vl-P2OfV20-n74uzi3cfTk_OCtS1nIpSd5UxXdkapxWQstK2GltjTSm1dBqsc65VqiMQqKir14bIqtJUpVa6rtQRe73zbmL4PlOamqFPjrzHkcKcGlGDziYL5f_Rqqzz3ErIjL76C70Jc8yf31K1rPObjc6U3lEuhpQidc0m9gPGX42AZltjk2ts7mts9jXm2Mu9fG4HWv8J3feWAdgB2_jD4H85fwOF36vl</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Vandezande, Wouter</creator><creator>Janssen, Kris P. F</creator><creator>Delport, Filip</creator><creator>Ameloot, Rob</creator><creator>De Vos, Dirk E</creator><creator>Lammertyn, Jeroen</creator><creator>Roeffaers, Maarten B. J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3178-5480</orcidid><orcidid>https://orcid.org/0000-0001-8143-6794</orcidid><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid></search><sort><creationdate>20170418</creationdate><title>Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors</title><author>Vandezande, Wouter ; Janssen, Kris P. F ; Delport, Filip ; Ameloot, Rob ; De Vos, Dirk E ; Lammertyn, Jeroen ; Roeffaers, Maarten B. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-74f855f7b5c430e3626b4ab5657242c406cccb33fe01a3ef9d5ee637587434983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alcohols</topic><topic>Detection</topic><topic>Kinetics</topic><topic>Metal-organic frameworks</topic><topic>Methanol</topic><topic>Methyl alcohol</topic><topic>Molecules</topic><topic>Nucleation</topic><topic>Plasmons</topic><topic>Recognition</topic><topic>Sensors</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandezande, Wouter</creatorcontrib><creatorcontrib>Janssen, Kris P. F</creatorcontrib><creatorcontrib>Delport, Filip</creatorcontrib><creatorcontrib>Ameloot, Rob</creatorcontrib><creatorcontrib>De Vos, Dirk E</creatorcontrib><creatorcontrib>Lammertyn, Jeroen</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandezande, Wouter</au><au>Janssen, Kris P. F</au><au>Delport, Filip</au><au>Ameloot, Rob</au><au>De Vos, Dirk E</au><au>Lammertyn, Jeroen</au><au>Roeffaers, Maarten B. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>89</volume><issue>8</issue><spage>4480</spage><epage>4487</epage><pages>4480-4487</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28318240</pmid><doi>10.1021/acs.analchem.6b04510</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3178-5480</orcidid><orcidid>https://orcid.org/0000-0001-8143-6794</orcidid><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-04, Vol.89 (8), p.4480-4487
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1904242607
source American Chemical Society Journals
subjects Alcohols
Detection
Kinetics
Metal-organic frameworks
Methanol
Methyl alcohol
Molecules
Nucleation
Plasmons
Recognition
Sensors
VOCs
Volatile organic compounds
title Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parts%20per%20Million%20Detection%20of%20Alcohol%20Vapors%20via%20Metal%20Organic%20Framework%20Functionalized%20Surface%20Plasmon%20Resonance%20Sensors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vandezande,%20Wouter&rft.date=2017-04-18&rft.volume=89&rft.issue=8&rft.spage=4480&rft.epage=4487&rft.pages=4480-4487&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b04510&rft_dat=%3Cproquest_cross%3E1904242607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892985554&rft_id=info:pmid/28318240&rfr_iscdi=true