Determining radial efficiency with a large data set by solving small-size linear programs

This paper presents a new algorithm for determining radial efficiency with a large data set by using small-size linear programs (LPs). Instead of trying to “reduce” the size of individual LPs, the proposed algorithm attempts to “control” the size of individual LPs, e.g., no more than 100 data points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2017-03, Vol.250 (1), p.147-166
Hauptverfasser: Chen, Wen-Chih, Lai, Sheng-Yung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 147
container_title Annals of operations research
container_volume 250
creator Chen, Wen-Chih
Lai, Sheng-Yung
description This paper presents a new algorithm for determining radial efficiency with a large data set by using small-size linear programs (LPs). Instead of trying to “reduce” the size of individual LPs, the proposed algorithm attempts to “control” the size of individual LPs, e.g., no more than 100 data points each time while maintaining the solution quality. The algorithm is specifically designed to address the problem of LP size limitation. From the empirical results, we conclude that the proposed algorithm can converge within a reasonable number of iterations without incurring extra computation time and has savings of up to 60 % of the benchmarks when the data set contains 15,000 points.
doi_str_mv 10.1007/s10479-015-1968-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904241462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550951446</galeid><sourcerecordid>A550951446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-6740bdd1e1fef513d6495997428924255f95cbee7835aa5fcf9c13ba80f0e7a43</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhSMEEpfCA7CzxIYFKXZiJ_GyKj9FqsSmXXRlTZxx6spxiiehujw9Ti8SLaKyNJas74xnzimKt4IfC87bjyS4bHXJhSqFbrpSPit2QrVVqeu6e17seKVkqeqavyxeEd1wzoXo1K64-oQLpslHH0eWYPAQGDrnrcdo9-zOL9cMWIA0IhtgAUa4sH7PaA4_NwlNEEJJ_hey4CNCYrdpHhNM9Lp44SAQvvlzHxWXXz5fnJ6V59-_fjs9OS-tVPVSNq3k_TAIFA6dEvXQSK20bmXV6UpWSjmtbI_YdrUCUM46bUXdQ8cdxxZkfVS8P_TNH_9YkRYzebIYAkScVzJCc1lJIZsqo-_-QW_mNcU8ndlM423FdfeXGiGg8dHNSwK7NTUnSnGthJRNpo7_Q-Uz4OTtHNH5_P5I8OGBoF8p20W5kB-vFxphJXqMiwNu00yU0Jnb5CdIeyO42SI3h8hNjvx-erNZUR00lNk4Ynqw35Oi3_8arDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968072098</pqid></control><display><type>article</type><title>Determining radial efficiency with a large data set by solving small-size linear programs</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Wen-Chih ; Lai, Sheng-Yung</creator><creatorcontrib>Chen, Wen-Chih ; Lai, Sheng-Yung</creatorcontrib><description>This paper presents a new algorithm for determining radial efficiency with a large data set by using small-size linear programs (LPs). Instead of trying to “reduce” the size of individual LPs, the proposed algorithm attempts to “control” the size of individual LPs, e.g., no more than 100 data points each time while maintaining the solution quality. The algorithm is specifically designed to address the problem of LP size limitation. From the empirical results, we conclude that the proposed algorithm can converge within a reasonable number of iterations without incurring extra computation time and has savings of up to 60 % of the benchmarks when the data set contains 15,000 points.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-015-1968-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Benchmarks ; Business and Management ; Combinatorics ; Data points ; Datasets ; Efficiency ; Iterative methods ; Linear programming ; Mathematical models ; Operations research ; Operations Research/Decision Theory ; Theory of Computation</subject><ispartof>Annals of operations research, 2017-03, Vol.250 (1), p.147-166</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Annals of Operations Research is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-6740bdd1e1fef513d6495997428924255f95cbee7835aa5fcf9c13ba80f0e7a43</citedby><cites>FETCH-LOGICAL-c453t-6740bdd1e1fef513d6495997428924255f95cbee7835aa5fcf9c13ba80f0e7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-015-1968-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-015-1968-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Chen, Wen-Chih</creatorcontrib><creatorcontrib>Lai, Sheng-Yung</creatorcontrib><title>Determining radial efficiency with a large data set by solving small-size linear programs</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>This paper presents a new algorithm for determining radial efficiency with a large data set by using small-size linear programs (LPs). Instead of trying to “reduce” the size of individual LPs, the proposed algorithm attempts to “control” the size of individual LPs, e.g., no more than 100 data points each time while maintaining the solution quality. The algorithm is specifically designed to address the problem of LP size limitation. From the empirical results, we conclude that the proposed algorithm can converge within a reasonable number of iterations without incurring extra computation time and has savings of up to 60 % of the benchmarks when the data set contains 15,000 points.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Data points</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhSMEEpfCA7CzxIYFKXZiJ_GyKj9FqsSmXXRlTZxx6spxiiehujw9Ti8SLaKyNJas74xnzimKt4IfC87bjyS4bHXJhSqFbrpSPit2QrVVqeu6e17seKVkqeqavyxeEd1wzoXo1K64-oQLpslHH0eWYPAQGDrnrcdo9-zOL9cMWIA0IhtgAUa4sH7PaA4_NwlNEEJJ_hey4CNCYrdpHhNM9Lp44SAQvvlzHxWXXz5fnJ6V59-_fjs9OS-tVPVSNq3k_TAIFA6dEvXQSK20bmXV6UpWSjmtbI_YdrUCUM46bUXdQ8cdxxZkfVS8P_TNH_9YkRYzebIYAkScVzJCc1lJIZsqo-_-QW_mNcU8ndlM423FdfeXGiGg8dHNSwK7NTUnSnGthJRNpo7_Q-Uz4OTtHNH5_P5I8OGBoF8p20W5kB-vFxphJXqMiwNu00yU0Jnb5CdIeyO42SI3h8hNjvx-erNZUR00lNk4Ynqw35Oi3_8arDk</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chen, Wen-Chih</creator><creator>Lai, Sheng-Yung</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Determining radial efficiency with a large data set by solving small-size linear programs</title><author>Chen, Wen-Chih ; Lai, Sheng-Yung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-6740bdd1e1fef513d6495997428924255f95cbee7835aa5fcf9c13ba80f0e7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Data points</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen-Chih</creatorcontrib><creatorcontrib>Lai, Sheng-Yung</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wen-Chih</au><au>Lai, Sheng-Yung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining radial efficiency with a large data set by solving small-size linear programs</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>250</volume><issue>1</issue><spage>147</spage><epage>166</epage><pages>147-166</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>This paper presents a new algorithm for determining radial efficiency with a large data set by using small-size linear programs (LPs). Instead of trying to “reduce” the size of individual LPs, the proposed algorithm attempts to “control” the size of individual LPs, e.g., no more than 100 data points each time while maintaining the solution quality. The algorithm is specifically designed to address the problem of LP size limitation. From the empirical results, we conclude that the proposed algorithm can converge within a reasonable number of iterations without incurring extra computation time and has savings of up to 60 % of the benchmarks when the data set contains 15,000 points.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-015-1968-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2017-03, Vol.250 (1), p.147-166
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_miscellaneous_1904241462
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Algorithms
Benchmarks
Business and Management
Combinatorics
Data points
Datasets
Efficiency
Iterative methods
Linear programming
Mathematical models
Operations research
Operations Research/Decision Theory
Theory of Computation
title Determining radial efficiency with a large data set by solving small-size linear programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20radial%20efficiency%20with%20a%20large%20data%20set%20by%20solving%20small-size%20linear%20programs&rft.jtitle=Annals%20of%20operations%20research&rft.au=Chen,%20Wen-Chih&rft.date=2017-03-01&rft.volume=250&rft.issue=1&rft.spage=147&rft.epage=166&rft.pages=147-166&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-015-1968-4&rft_dat=%3Cgale_proqu%3EA550951446%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968072098&rft_id=info:pmid/&rft_galeid=A550951446&rfr_iscdi=true