Topological defect dynamics in operando battery nanoparticles

Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-06, Vol.348 (6241), p.1344-1347
Hauptverfasser: Ulvestad, A., Singer, A., Clark, J. N., Cho, H. M., Kim, J. W., Harder, R., Maser, J., Meng, Y. S., Shpyrko, O. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1347
container_issue 6241
container_start_page 1344
container_title Science (American Association for the Advancement of Science)
container_volume 348
creator Ulvestad, A.
Singer, A.
Clark, J. N.
Cho, H. M.
Kim, J. W.
Harder, R.
Maser, J.
Meng, Y. S.
Shpyrko, O. G.
description Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson's ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.
doi_str_mv 10.1126/science.aaa1313
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904240695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747847</jstor_id><sourcerecordid>24747847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d23f1eb4da15773f47db7e80970553379a509685fea83048ade9071ea121b7ce3</originalsourceid><addsrcrecordid>eNpdkDFv2zAQhYmgBeK6nTMFEJqli-yjSIrk0KEw2qSAgS7uTJypUyJDJlWSHvzvo8BGhk43vO893HuM3XFYcd606-wHCp5WiMgFFzdswcGq2jYgPrAFgGhrA1rdsk85HwBmzYoF-76LUxzj8-BxrDrqyZeqOwc8Dj5XQ6jiRAlDF6s9lkLpXAUMccJUBj9S_sw-9jhm-nK9S_b318_d5qne_nn8vfmxrb20qtRdI3pOe9khV1qLXupur8mA1aCUENqiAtsa1RMaAdJgRxY0J-QN32tPYsm-XnJjLoObmxbyLz6GML_rZgiMkjP07QJNKf47US7uOGRP44iB4ik7bkE2ElqrZvThP_QQTynMFRxvjTVSSf4WuL5QPsWcE_VuSsMR09lxcG-bu-vm7rr57Li_OA65xPSON1JLbaQWr2T8fzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689845414</pqid></control><display><type>article</type><title>Topological defect dynamics in operando battery nanoparticles</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Ulvestad, A. ; Singer, A. ; Clark, J. N. ; Cho, H. M. ; Kim, J. W. ; Harder, R. ; Maser, J. ; Meng, Y. S. ; Shpyrko, O. G.</creator><creatorcontrib>Ulvestad, A. ; Singer, A. ; Clark, J. N. ; Cho, H. M. ; Kim, J. W. ; Harder, R. ; Maser, J. ; Meng, Y. S. ; Shpyrko, O. G. ; Energy Frontier Research Centers (EFRC) ; Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><description>Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson's ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa1313</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Batteries ; Defects ; Dislocations ; Dynamics ; Electric batteries ; energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials) ; Imaging ; Nanoparticles ; Nanostructure ; Phase transformations ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2015-06, Vol.348 (6241), p.1344-1347</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d23f1eb4da15773f47db7e80970553379a509685fea83048ade9071ea121b7ce3</citedby><cites>FETCH-LOGICAL-c495t-d23f1eb4da15773f47db7e80970553379a509685fea83048ade9071ea121b7ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24747847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24747847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1210854$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Singer, A.</creatorcontrib><creatorcontrib>Clark, J. N.</creatorcontrib><creatorcontrib>Cho, H. M.</creatorcontrib><creatorcontrib>Kim, J. W.</creatorcontrib><creatorcontrib>Harder, R.</creatorcontrib><creatorcontrib>Maser, J.</creatorcontrib><creatorcontrib>Meng, Y. S.</creatorcontrib><creatorcontrib>Shpyrko, O. G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><title>Topological defect dynamics in operando battery nanoparticles</title><title>Science (American Association for the Advancement of Science)</title><description>Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson's ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.</description><subject>Batteries</subject><subject>Defects</subject><subject>Dislocations</subject><subject>Dynamics</subject><subject>Electric batteries</subject><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><subject>Imaging</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Phase transformations</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkDFv2zAQhYmgBeK6nTMFEJqli-yjSIrk0KEw2qSAgS7uTJypUyJDJlWSHvzvo8BGhk43vO893HuM3XFYcd606-wHCp5WiMgFFzdswcGq2jYgPrAFgGhrA1rdsk85HwBmzYoF-76LUxzj8-BxrDrqyZeqOwc8Dj5XQ6jiRAlDF6s9lkLpXAUMccJUBj9S_sw-9jhm-nK9S_b318_d5qne_nn8vfmxrb20qtRdI3pOe9khV1qLXupur8mA1aCUENqiAtsa1RMaAdJgRxY0J-QN32tPYsm-XnJjLoObmxbyLz6GML_rZgiMkjP07QJNKf47US7uOGRP44iB4ik7bkE2ElqrZvThP_QQTynMFRxvjTVSSf4WuL5QPsWcE_VuSsMR09lxcG-bu-vm7rr57Li_OA65xPSON1JLbaQWr2T8fzA</recordid><startdate>20150619</startdate><enddate>20150619</enddate><creator>Ulvestad, A.</creator><creator>Singer, A.</creator><creator>Clark, J. N.</creator><creator>Cho, H. M.</creator><creator>Kim, J. W.</creator><creator>Harder, R.</creator><creator>Maser, J.</creator><creator>Meng, Y. S.</creator><creator>Shpyrko, O. G.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope></search><sort><creationdate>20150619</creationdate><title>Topological defect dynamics in operando battery nanoparticles</title><author>Ulvestad, A. ; Singer, A. ; Clark, J. N. ; Cho, H. M. ; Kim, J. W. ; Harder, R. ; Maser, J. ; Meng, Y. S. ; Shpyrko, O. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d23f1eb4da15773f47db7e80970553379a509685fea83048ade9071ea121b7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Batteries</topic><topic>Defects</topic><topic>Dislocations</topic><topic>Dynamics</topic><topic>Electric batteries</topic><topic>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><topic>Imaging</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Phase transformations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Singer, A.</creatorcontrib><creatorcontrib>Clark, J. N.</creatorcontrib><creatorcontrib>Cho, H. M.</creatorcontrib><creatorcontrib>Kim, J. W.</creatorcontrib><creatorcontrib>Harder, R.</creatorcontrib><creatorcontrib>Maser, J.</creatorcontrib><creatorcontrib>Meng, Y. S.</creatorcontrib><creatorcontrib>Shpyrko, O. G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulvestad, A.</au><au>Singer, A.</au><au>Clark, J. N.</au><au>Cho, H. M.</au><au>Kim, J. W.</au><au>Harder, R.</au><au>Maser, J.</au><au>Meng, Y. S.</au><au>Shpyrko, O. G.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Northeastern Center for Chemical Energy Storage (NECCES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological defect dynamics in operando battery nanoparticles</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-06-19</date><risdate>2015</risdate><volume>348</volume><issue>6241</issue><spage>1344</spage><epage>1347</epage><pages>1344-1347</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson's ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aaa1313</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-06, Vol.348 (6241), p.1344-1347
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904240695
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Batteries
Defects
Dislocations
Dynamics
Electric batteries
energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)
Imaging
Nanoparticles
Nanostructure
Phase transformations
Topology
title Topological defect dynamics in operando battery nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20defect%20dynamics%20in%20operando%20battery%20nanoparticles&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ulvestad,%20A.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2015-06-19&rft.volume=348&rft.issue=6241&rft.spage=1344&rft.epage=1347&rft.pages=1344-1347&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa1313&rft_dat=%3Cjstor_osti_%3E24747847%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689845414&rft_id=info:pmid/&rft_jstor_id=24747847&rfr_iscdi=true