The influence of near-wall density and viscosity gradients on turbulence in channel flows
The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density $\unicode[STIX]{x1D70C}$ and viscosity...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2016-12, Vol.809, p.793-820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | |
container_start_page | 793 |
container_title | Journal of fluid mechanics |
container_volume | 809 |
creator | Patel, Ashish Boersma, Bendiks J. Pecnik, Rene |
description | The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density
$\unicode[STIX]{x1D70C}$
and viscosity
$\unicode[STIX]{x1D707}$
as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as
$Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$
(the bar and subscript
$w$
denote Reynolds averaging and wall value respectively, while
$Re_{\unicode[STIX]{x1D70F}}$
is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
(
$\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$
) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
gradients. |
doi_str_mv | 10.1017/jfm.2016.689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904239981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_689</cupid><sourcerecordid>4321472755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-4bae27ae75cd6dabd6abfe490a1c9d9e4b49fa26a8ea5f57c6db211ae72c7cbc3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH7c_AEBLx7smqRp0hxF_ALBix48lWkyWbtkU01axX9v3fUgIngaBp73ZYaHkCPO5pxxfbb0q7lgXM1VbbbIjEtlCq1ktU1mjAlRcC7YLtnLeckYL5nRM_L08Iy0iz6MGC3S3tOIkIp3CIE6jLkbPihER9-6bPv1tkjgOoxDpn2kw5jaMayjXaT2GWLEQH3o3_MB2fEQMh5-z33yeHX5cHFT3N1f316c3xVWajEUsgUUGlBX1ikHrVPQepSGAbfGGZStNB6Eghqh8pW2yrWC8ykgrLatLffJyab3JfWvI-ahWU23YggQsR9zww2TojSm5v-jtdGlVnVVTejxL3TZjylOj0xULaU25brwdEPZ1Oec0DcvqVtB-mg4a76UNJOS5ktJMymZ8Pk3Dqs2dW6BP1r_CnwCn-WPkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884479381</pqid></control><display><type>article</type><title>The influence of near-wall density and viscosity gradients on turbulence in channel flows</title><source>Cambridge Journals</source><creator>Patel, Ashish ; Boersma, Bendiks J. ; Pecnik, Rene</creator><creatorcontrib>Patel, Ashish ; Boersma, Bendiks J. ; Pecnik, Rene</creatorcontrib><description>The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density
$\unicode[STIX]{x1D70C}$
and viscosity
$\unicode[STIX]{x1D707}$
as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as
$Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$
(the bar and subscript
$w$
denote Reynolds averaging and wall value respectively, while
$Re_{\unicode[STIX]{x1D70F}}$
is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
(
$\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$
) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
gradients.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.689</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Computational fluid dynamics ; Density ; Energy transfer ; Fluid flow ; Fluid mechanics ; Mathematical analysis ; Navier-Stokes equations ; Reynolds number ; Turbulence ; Turbulent flow ; Viscosity ; Walls</subject><ispartof>Journal of fluid mechanics, 2016-12, Vol.809, p.793-820</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-4bae27ae75cd6dabd6abfe490a1c9d9e4b49fa26a8ea5f57c6db211ae72c7cbc3</citedby><cites>FETCH-LOGICAL-c472t-4bae27ae75cd6dabd6abfe490a1c9d9e4b49fa26a8ea5f57c6db211ae72c7cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016006893/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Patel, Ashish</creatorcontrib><creatorcontrib>Boersma, Bendiks J.</creatorcontrib><creatorcontrib>Pecnik, Rene</creatorcontrib><title>The influence of near-wall density and viscosity gradients on turbulence in channel flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density
$\unicode[STIX]{x1D70C}$
and viscosity
$\unicode[STIX]{x1D707}$
as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as
$Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$
(the bar and subscript
$w$
denote Reynolds averaging and wall value respectively, while
$Re_{\unicode[STIX]{x1D70F}}$
is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
(
$\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$
) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
gradients.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Energy transfer</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Reynolds number</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><subject>Walls</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LxDAQhoMouH7c_AEBLx7smqRp0hxF_ALBix48lWkyWbtkU01axX9v3fUgIngaBp73ZYaHkCPO5pxxfbb0q7lgXM1VbbbIjEtlCq1ktU1mjAlRcC7YLtnLeckYL5nRM_L08Iy0iz6MGC3S3tOIkIp3CIE6jLkbPihER9-6bPv1tkjgOoxDpn2kw5jaMayjXaT2GWLEQH3o3_MB2fEQMh5-z33yeHX5cHFT3N1f316c3xVWajEUsgUUGlBX1ikHrVPQepSGAbfGGZStNB6Eghqh8pW2yrWC8ykgrLatLffJyab3JfWvI-ahWU23YggQsR9zww2TojSm5v-jtdGlVnVVTejxL3TZjylOj0xULaU25brwdEPZ1Oec0DcvqVtB-mg4a76UNJOS5ktJMymZ8Pk3Dqs2dW6BP1r_CnwCn-WPkw</recordid><startdate>20161225</startdate><enddate>20161225</enddate><creator>Patel, Ashish</creator><creator>Boersma, Bendiks J.</creator><creator>Pecnik, Rene</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20161225</creationdate><title>The influence of near-wall density and viscosity gradients on turbulence in channel flows</title><author>Patel, Ashish ; Boersma, Bendiks J. ; Pecnik, Rene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-4bae27ae75cd6dabd6abfe490a1c9d9e4b49fa26a8ea5f57c6db211ae72c7cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Energy transfer</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Reynolds number</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Ashish</creatorcontrib><creatorcontrib>Boersma, Bendiks J.</creatorcontrib><creatorcontrib>Pecnik, Rene</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Ashish</au><au>Boersma, Bendiks J.</au><au>Pecnik, Rene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of near-wall density and viscosity gradients on turbulence in channel flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-12-25</date><risdate>2016</risdate><volume>809</volume><spage>793</spage><epage>820</epage><pages>793-820</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density
$\unicode[STIX]{x1D70C}$
and viscosity
$\unicode[STIX]{x1D707}$
as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as
$Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$
(the bar and subscript
$w$
denote Reynolds averaging and wall value respectively, while
$Re_{\unicode[STIX]{x1D70F}}$
is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
(
$\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$
) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall
$Re_{\unicode[STIX]{x1D70F}}^{\star }$
gradients.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.689</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2016-12, Vol.809, p.793-820 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904239981 |
source | Cambridge Journals |
subjects | Anisotropy Computational fluid dynamics Density Energy transfer Fluid flow Fluid mechanics Mathematical analysis Navier-Stokes equations Reynolds number Turbulence Turbulent flow Viscosity Walls |
title | The influence of near-wall density and viscosity gradients on turbulence in channel flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20near-wall%20density%20and%20viscosity%20gradients%20on%20turbulence%20in%20channel%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Patel,%20Ashish&rft.date=2016-12-25&rft.volume=809&rft.spage=793&rft.epage=820&rft.pages=793-820&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.689&rft_dat=%3Cproquest_cross%3E4321472755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884479381&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_689&rfr_iscdi=true |