Hypergeometric Solutions to the Symmetric q-Painlevé Equations

We consider the symmetric q-Painleve equations derived from the birational representation of affine Weyl groups by applying the projective reduction and construct the hypergeometric solutions. Moreover, we discuss continuous limits of the symmetric q-Painleve equations to Painleve equations together...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2015-01, Vol.2015 (4), p.1101-1140
Hauptverfasser: Kajiwara, Kenji, Nakazono, Nobutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1140
container_issue 4
container_start_page 1101
container_title International mathematics research notices
container_volume 2015
creator Kajiwara, Kenji
Nakazono, Nobutaka
description We consider the symmetric q-Painleve equations derived from the birational representation of affine Weyl groups by applying the projective reduction and construct the hypergeometric solutions. Moreover, we discuss continuous limits of the symmetric q-Painleve equations to Painleve equations together with their hypergeometric solutions.
doi_str_mv 10.1093/imrn/rnt237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904238973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904238973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8165f9b63d963701eddd67e2049f055d6c8ea0fd7c362f00206f9783018f99ce3</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQdRsFZXvkCWgsTemUnmZyVSWisUFKrrISZ3NJJk2pmJkEfyOXwxU9vVuXA-LoePkGsKdxQ0n9Wt72a-i4zLEzKhQskUWCZPxxskT6Vm6pxchPAFwIAqPiH3q2GL_gNdi9HXZbJxTR9r14UkuiR-YrIZ2mO1S1-Kumvw-_cnWez64h-7JGe2aAJeHXNK3paL1_kqXT8_Ps0f1mnJhY6poiK3-l3wSgsugWJVVUIig0xbyPNKlAoLsJUccWb364TVUvFxpNW6RD4lN4e_W-92PYZo2jqU2DRFh64PhmrIGFda8hG9PaCldyF4tGbr67bwg6Fg9prMXpM5aOJ_hvpdGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904238973</pqid></control><display><type>article</type><title>Hypergeometric Solutions to the Symmetric q-Painlevé Equations</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kajiwara, Kenji ; Nakazono, Nobutaka</creator><creatorcontrib>Kajiwara, Kenji ; Nakazono, Nobutaka</creatorcontrib><description>We consider the symmetric q-Painleve equations derived from the birational representation of affine Weyl groups by applying the projective reduction and construct the hypergeometric solutions. Moreover, we discuss continuous limits of the symmetric q-Painleve equations to Painleve equations together with their hypergeometric solutions.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnt237</identifier><language>eng</language><subject>Construction ; Group theory ; Mathematical analysis ; Reduction ; Representations ; Symmetry</subject><ispartof>International mathematics research notices, 2015-01, Vol.2015 (4), p.1101-1140</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8165f9b63d963701eddd67e2049f055d6c8ea0fd7c362f00206f9783018f99ce3</citedby><cites>FETCH-LOGICAL-c369t-8165f9b63d963701eddd67e2049f055d6c8ea0fd7c362f00206f9783018f99ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Nakazono, Nobutaka</creatorcontrib><title>Hypergeometric Solutions to the Symmetric q-Painlevé Equations</title><title>International mathematics research notices</title><description>We consider the symmetric q-Painleve equations derived from the birational representation of affine Weyl groups by applying the projective reduction and construct the hypergeometric solutions. Moreover, we discuss continuous limits of the symmetric q-Painleve equations to Painleve equations together with their hypergeometric solutions.</description><subject>Construction</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Reduction</subject><subject>Representations</subject><subject>Symmetry</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AUhQdRsFZXvkCWgsTemUnmZyVSWisUFKrrISZ3NJJk2pmJkEfyOXwxU9vVuXA-LoePkGsKdxQ0n9Wt72a-i4zLEzKhQskUWCZPxxskT6Vm6pxchPAFwIAqPiH3q2GL_gNdi9HXZbJxTR9r14UkuiR-YrIZ2mO1S1-Kumvw-_cnWez64h-7JGe2aAJeHXNK3paL1_kqXT8_Ps0f1mnJhY6poiK3-l3wSgsugWJVVUIig0xbyPNKlAoLsJUccWb364TVUvFxpNW6RD4lN4e_W-92PYZo2jqU2DRFh64PhmrIGFda8hG9PaCldyF4tGbr67bwg6Fg9prMXpM5aOJ_hvpdGw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kajiwara, Kenji</creator><creator>Nakazono, Nobutaka</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150101</creationdate><title>Hypergeometric Solutions to the Symmetric q-Painlevé Equations</title><author>Kajiwara, Kenji ; Nakazono, Nobutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8165f9b63d963701eddd67e2049f055d6c8ea0fd7c362f00206f9783018f99ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Construction</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Reduction</topic><topic>Representations</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Nakazono, Nobutaka</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajiwara, Kenji</au><au>Nakazono, Nobutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypergeometric Solutions to the Symmetric q-Painlevé Equations</atitle><jtitle>International mathematics research notices</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>4</issue><spage>1101</spage><epage>1140</epage><pages>1101-1140</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We consider the symmetric q-Painleve equations derived from the birational representation of affine Weyl groups by applying the projective reduction and construct the hypergeometric solutions. Moreover, we discuss continuous limits of the symmetric q-Painleve equations to Painleve equations together with their hypergeometric solutions.</abstract><doi>10.1093/imrn/rnt237</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2015-01, Vol.2015 (4), p.1101-1140
issn 1073-7928
1687-0247
language eng
recordid cdi_proquest_miscellaneous_1904238973
source Oxford University Press Journals All Titles (1996-Current)
subjects Construction
Group theory
Mathematical analysis
Reduction
Representations
Symmetry
title Hypergeometric Solutions to the Symmetric q-Painlevé Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypergeometric%20Solutions%20to%20the%20Symmetric%20q-Painlev%C3%A9%20Equations&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Kajiwara,%20Kenji&rft.date=2015-01-01&rft.volume=2015&rft.issue=4&rft.spage=1101&rft.epage=1140&rft.pages=1101-1140&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnt237&rft_dat=%3Cproquest_cross%3E1904238973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904238973&rft_id=info:pmid/&rfr_iscdi=true