Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater

After landing in Gale Crater on August 6, 2012, the Mars Science Laboratory Curiosity rover traveled across regolith‐covered, rock‐strewn plains that transitioned into terrains that have been variably eroded, with valleys partially filled with windblown sands, and intervening plateaus capped by well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2017-05, Vol.34 (3), p.495-518
Hauptverfasser: Arvidson, Raymond E., Iagnemma, Karl D., Maimone, Mark, Fraeman, Abigail A., Zhou, Feng, Heverly, Matthew C., Bellutta, Paolo, Rubin, David, Stein, Nathan T., Grotzinger, John P., Vasavada, Ashwin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 3
container_start_page 495
container_title Journal of field robotics
container_volume 34
creator Arvidson, Raymond E.
Iagnemma, Karl D.
Maimone, Mark
Fraeman, Abigail A.
Zhou, Feng
Heverly, Matthew C.
Bellutta, Paolo
Rubin, David
Stein, Nathan T.
Grotzinger, John P.
Vasavada, Ashwin R.
description After landing in Gale Crater on August 6, 2012, the Mars Science Laboratory Curiosity rover traveled across regolith‐covered, rock‐strewn plains that transitioned into terrains that have been variably eroded, with valleys partially filled with windblown sands, and intervening plateaus capped by well‐cemented sandstones that have been fractured and shaped by wind into outcrops with numerous sharp rock surfaces. Wheel punctures and tears caused by sharp rocks while traversing the plateaus led to directing the rover to traverse in valleys where sands would cushion wheel loads. This required driving across a megaripple (windblown, sand‐sized deposit covered by coarser grains) that straddles a narrow gap and several extensive megaripple deposits that accumulated in low portions of valleys. Traverses across megaripple deposits led to mobility difficulties, with sinkage values up to approximately 30% of the 0.50 m wheel diameter, resultant high compaction resistances, and rover‐based slip up to 77%. Analysis of imaging and engineering data collected during traverses across megaripples for the first 710 sols (Mars days) of the mission, laboratory‐based single‐wheel soil experiments, full‐scale rover tests at the Dumont Dunes, Mojave Desert, California, and numerical simulations show that a combination of material properties and megaripple geometries explain the high wheel sinkage and slip events. Extensive megaripple deposits have subsequently been avoided and instead traverses have been implemented across terrains covered with regolith or thin windblown sand covers and megaripples separated by bedrock exposures.
doi_str_mv 10.1002/rob.21647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904237174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904237174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3307-bf2161fbda050bf59a25ccd12c08f15a38258b99fa1b75427d3a14bcdf2b5d673</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4soOKcHv0HAix66JWnSNEcdOoWNwaYHTyFJ05HRNTVplX57u1U8CJ7eg_d7j__7RdE1ghMEIZ56pyYYpYSdRCNEaRoTnrLT357y8-gihB2EJMk4HUXvS-kD2GhrKm3AQirnZeN8B2atty7YpgNr92k8WJqt9LauSwNm3oVgq20AbQ0aBzauBAxBYCswl8e5bIy_jM4KWQZz9VPH0dvT4-vsOV6s5i-z-0WskwSyWBV9XFSoXEIKVUG5xFTrHGENswJRmWSYZorzQiLFKMEsTyQiSucFVjRPWTKOboe7tXcfrQmN2NugTVnKyrg2CMQhwQlDjPTozR9051pf9ekEyjhEhGCU9NTdQOnDn94UovZ2L30nEBQHyaKXLI6Se3Y6sF-2NN3_oFivHoaNbyB3fJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1890144213</pqid></control><display><type>article</type><title>Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater</title><source>Wiley Online Library</source><creator>Arvidson, Raymond E. ; Iagnemma, Karl D. ; Maimone, Mark ; Fraeman, Abigail A. ; Zhou, Feng ; Heverly, Matthew C. ; Bellutta, Paolo ; Rubin, David ; Stein, Nathan T. ; Grotzinger, John P. ; Vasavada, Ashwin R.</creator><creatorcontrib>Arvidson, Raymond E. ; Iagnemma, Karl D. ; Maimone, Mark ; Fraeman, Abigail A. ; Zhou, Feng ; Heverly, Matthew C. ; Bellutta, Paolo ; Rubin, David ; Stein, Nathan T. ; Grotzinger, John P. ; Vasavada, Ashwin R.</creatorcontrib><description>After landing in Gale Crater on August 6, 2012, the Mars Science Laboratory Curiosity rover traveled across regolith‐covered, rock‐strewn plains that transitioned into terrains that have been variably eroded, with valleys partially filled with windblown sands, and intervening plateaus capped by well‐cemented sandstones that have been fractured and shaped by wind into outcrops with numerous sharp rock surfaces. Wheel punctures and tears caused by sharp rocks while traversing the plateaus led to directing the rover to traverse in valleys where sands would cushion wheel loads. This required driving across a megaripple (windblown, sand‐sized deposit covered by coarser grains) that straddles a narrow gap and several extensive megaripple deposits that accumulated in low portions of valleys. Traverses across megaripple deposits led to mobility difficulties, with sinkage values up to approximately 30% of the 0.50 m wheel diameter, resultant high compaction resistances, and rover‐based slip up to 77%. Analysis of imaging and engineering data collected during traverses across megaripples for the first 710 sols (Mars days) of the mission, laboratory‐based single‐wheel soil experiments, full‐scale rover tests at the Dumont Dunes, Mojave Desert, California, and numerical simulations show that a combination of material properties and megaripple geometries explain the high wheel sinkage and slip events. Extensive megaripple deposits have subsequently been avoided and instead traverses have been implemented across terrains covered with regolith or thin windblown sand covers and megaripples separated by bedrock exposures.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21647</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Curiosity (Mars rover) ; Deposits ; Mars craters ; Rock ; Sands ; Slip ; Valleys ; Wheels</subject><ispartof>Journal of field robotics, 2017-05, Vol.34 (3), p.495-518</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3307-bf2161fbda050bf59a25ccd12c08f15a38258b99fa1b75427d3a14bcdf2b5d673</citedby><cites>FETCH-LOGICAL-c3307-bf2161fbda050bf59a25ccd12c08f15a38258b99fa1b75427d3a14bcdf2b5d673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arvidson, Raymond E.</creatorcontrib><creatorcontrib>Iagnemma, Karl D.</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Fraeman, Abigail A.</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Heverly, Matthew C.</creatorcontrib><creatorcontrib>Bellutta, Paolo</creatorcontrib><creatorcontrib>Rubin, David</creatorcontrib><creatorcontrib>Stein, Nathan T.</creatorcontrib><creatorcontrib>Grotzinger, John P.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><title>Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater</title><title>Journal of field robotics</title><description>After landing in Gale Crater on August 6, 2012, the Mars Science Laboratory Curiosity rover traveled across regolith‐covered, rock‐strewn plains that transitioned into terrains that have been variably eroded, with valleys partially filled with windblown sands, and intervening plateaus capped by well‐cemented sandstones that have been fractured and shaped by wind into outcrops with numerous sharp rock surfaces. Wheel punctures and tears caused by sharp rocks while traversing the plateaus led to directing the rover to traverse in valleys where sands would cushion wheel loads. This required driving across a megaripple (windblown, sand‐sized deposit covered by coarser grains) that straddles a narrow gap and several extensive megaripple deposits that accumulated in low portions of valleys. Traverses across megaripple deposits led to mobility difficulties, with sinkage values up to approximately 30% of the 0.50 m wheel diameter, resultant high compaction resistances, and rover‐based slip up to 77%. Analysis of imaging and engineering data collected during traverses across megaripples for the first 710 sols (Mars days) of the mission, laboratory‐based single‐wheel soil experiments, full‐scale rover tests at the Dumont Dunes, Mojave Desert, California, and numerical simulations show that a combination of material properties and megaripple geometries explain the high wheel sinkage and slip events. Extensive megaripple deposits have subsequently been avoided and instead traverses have been implemented across terrains covered with regolith or thin windblown sand covers and megaripples separated by bedrock exposures.</description><subject>Curiosity (Mars rover)</subject><subject>Deposits</subject><subject>Mars craters</subject><subject>Rock</subject><subject>Sands</subject><subject>Slip</subject><subject>Valleys</subject><subject>Wheels</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4soOKcHv0HAix66JWnSNEcdOoWNwaYHTyFJ05HRNTVplX57u1U8CJ7eg_d7j__7RdE1ghMEIZ56pyYYpYSdRCNEaRoTnrLT357y8-gihB2EJMk4HUXvS-kD2GhrKm3AQirnZeN8B2atty7YpgNr92k8WJqt9LauSwNm3oVgq20AbQ0aBzauBAxBYCswl8e5bIy_jM4KWQZz9VPH0dvT4-vsOV6s5i-z-0WskwSyWBV9XFSoXEIKVUG5xFTrHGENswJRmWSYZorzQiLFKMEsTyQiSucFVjRPWTKOboe7tXcfrQmN2NugTVnKyrg2CMQhwQlDjPTozR9051pf9ekEyjhEhGCU9NTdQOnDn94UovZ2L30nEBQHyaKXLI6Se3Y6sF-2NN3_oFivHoaNbyB3fJo</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Arvidson, Raymond E.</creator><creator>Iagnemma, Karl D.</creator><creator>Maimone, Mark</creator><creator>Fraeman, Abigail A.</creator><creator>Zhou, Feng</creator><creator>Heverly, Matthew C.</creator><creator>Bellutta, Paolo</creator><creator>Rubin, David</creator><creator>Stein, Nathan T.</creator><creator>Grotzinger, John P.</creator><creator>Vasavada, Ashwin R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater</title><author>Arvidson, Raymond E. ; Iagnemma, Karl D. ; Maimone, Mark ; Fraeman, Abigail A. ; Zhou, Feng ; Heverly, Matthew C. ; Bellutta, Paolo ; Rubin, David ; Stein, Nathan T. ; Grotzinger, John P. ; Vasavada, Ashwin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3307-bf2161fbda050bf59a25ccd12c08f15a38258b99fa1b75427d3a14bcdf2b5d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Curiosity (Mars rover)</topic><topic>Deposits</topic><topic>Mars craters</topic><topic>Rock</topic><topic>Sands</topic><topic>Slip</topic><topic>Valleys</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvidson, Raymond E.</creatorcontrib><creatorcontrib>Iagnemma, Karl D.</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Fraeman, Abigail A.</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Heverly, Matthew C.</creatorcontrib><creatorcontrib>Bellutta, Paolo</creatorcontrib><creatorcontrib>Rubin, David</creatorcontrib><creatorcontrib>Stein, Nathan T.</creatorcontrib><creatorcontrib>Grotzinger, John P.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvidson, Raymond E.</au><au>Iagnemma, Karl D.</au><au>Maimone, Mark</au><au>Fraeman, Abigail A.</au><au>Zhou, Feng</au><au>Heverly, Matthew C.</au><au>Bellutta, Paolo</au><au>Rubin, David</au><au>Stein, Nathan T.</au><au>Grotzinger, John P.</au><au>Vasavada, Ashwin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater</atitle><jtitle>Journal of field robotics</jtitle><date>2017-05</date><risdate>2017</risdate><volume>34</volume><issue>3</issue><spage>495</spage><epage>518</epage><pages>495-518</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>After landing in Gale Crater on August 6, 2012, the Mars Science Laboratory Curiosity rover traveled across regolith‐covered, rock‐strewn plains that transitioned into terrains that have been variably eroded, with valleys partially filled with windblown sands, and intervening plateaus capped by well‐cemented sandstones that have been fractured and shaped by wind into outcrops with numerous sharp rock surfaces. Wheel punctures and tears caused by sharp rocks while traversing the plateaus led to directing the rover to traverse in valleys where sands would cushion wheel loads. This required driving across a megaripple (windblown, sand‐sized deposit covered by coarser grains) that straddles a narrow gap and several extensive megaripple deposits that accumulated in low portions of valleys. Traverses across megaripple deposits led to mobility difficulties, with sinkage values up to approximately 30% of the 0.50 m wheel diameter, resultant high compaction resistances, and rover‐based slip up to 77%. Analysis of imaging and engineering data collected during traverses across megaripples for the first 710 sols (Mars days) of the mission, laboratory‐based single‐wheel soil experiments, full‐scale rover tests at the Dumont Dunes, Mojave Desert, California, and numerical simulations show that a combination of material properties and megaripple geometries explain the high wheel sinkage and slip events. Extensive megaripple deposits have subsequently been avoided and instead traverses have been implemented across terrains covered with regolith or thin windblown sand covers and megaripples separated by bedrock exposures.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.21647</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2017-05, Vol.34 (3), p.495-518
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_miscellaneous_1904237174
source Wiley Online Library
subjects Curiosity (Mars rover)
Deposits
Mars craters
Rock
Sands
Slip
Valleys
Wheels
title Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20Science%20Laboratory%20Curiosity%20Rover%20Megaripple%20Crossings%20up%20to%20Sol%20710%20in%20Gale%20Crater&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Arvidson,%20Raymond%20E.&rft.date=2017-05&rft.volume=34&rft.issue=3&rft.spage=495&rft.epage=518&rft.pages=495-518&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21647&rft_dat=%3Cproquest_cross%3E1904237174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1890144213&rft_id=info:pmid/&rfr_iscdi=true