Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples
Nonheating paleointensity methods utilize an anhysteretic remanent magnetization (ARM) or a saturation isothermal remanent magnetization to model the natural thermal remanent magnetization (TRM) to avoid heating‐induced alteration. We report the results of paleointensity experiments using the ARM, p...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2017-03, Vol.122 (3), p.1614-1633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 3 |
container_start_page | 1614 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 122 |
creator | Lerner, Geoffrey A. Smirnov, Aleksey V. Surovitckii, Leonid V. Piispa, Elisa J. |
description | Nonheating paleointensity methods utilize an anhysteretic remanent magnetization (ARM) or a saturation isothermal remanent magnetization to model the natural thermal remanent magnetization (TRM) to avoid heating‐induced alteration. We report the results of paleointensity experiments using the ARM, pseudo‐Thellier, and ratio of equivalent magnetization (REM) methods conducted to investigate their relative efficiency in recovering the true paleofield strength and to provide additional estimates of their calibration factors. The experiments on synthetic magnetite‐bearing samples representing single‐domain (SD) and pseudo‐single‐domain (PSD) magnetic states indicated that the correction factors for the ARM‐based methods depend on the magnetic grain size/domain state changing from ~6.3 (for SD grains) to ~4.1 (for ~1.5 µm PSD grains). The pseudo‐Thellier method yielded correct absolute paleointensity values when normalization by the TRM/ARM demagnetization slope was used. When applied to samples of lava flows and dikes from the ~32 kyr Lemptégy volcano (France), both the ARM and pseudo‐Thellier methods produced similar paleointensity estimates (28.0 ± 5.1 μT and 26.9 ± 4.7 μT, respectively) consistent with the available Thellier data for the 31–33 kyr time interval. The correction factors estimated from our synthetic samples for the REM (~3000) and for REMc (~1500) and REM′ (~1500) variants are consistent with the previously published estimates. However, all REM variants yielded unrealistically high estimates (>110 μT) of the paleofield strength from our natural samples. Our experimental results support ARM as a better proxy of TRM and suggest that the ARM‐based methods currently represent the best alternative to heating‐based absolute paleointensity method.
Key Points
Nonheating paleointensity methods were tested on natural and synthetic samples to determine their accuracy and precision
Anhysteretic remanent magnetization is a better proxy of thermal remanent magnetization than saturation isothermal remanent magnetization
Low pseudo‐Thellier paleointensities obtained from the ~32 kyr Lemptegy volcano are consistent with the Thellier data from coeval rocks |
doi_str_mv | 10.1002/2016JB013777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904236573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904236573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4623-a2daed22e20ee921d0efd3c9f29669ca0b323887a575c9cf23ffce2c00770ab13</originalsourceid><addsrcrecordid>eNqFkc1KHEEQxweJkGXjLQ_Q4MVDNumPnY_25i6JUURB9DzU9NS4vfR0T7p7kL3lEXzGPEl6XJHgwdSlin_96k8VlWWfGf3KKOXfOGXF5YoyUZblQTbjrJALKfLiw2vNxMfsKIQtTVEliS1n2dO1sxuEqO0D6TFuXBtI5zyBJjgzRiQDGHTaRrRBxx1pMaLvtU0Tzp6StesH8Do4S8C2RIHRjX_ukTFMnmFn4wajVs_9NDZ6MKSHB5vEiH9-PzWYDCYS-sFg-JQddmACHr3keXb_4_vd-ufi6ub8Yn12tYBlwcUCeAvYco6cIkrOWopdK5TsuCwKqYA2gouqKiEvcyVVx0XXKeSK0rKk0DAxz072voN3v0YMse51UGgMWHRjqJmkSy6KvBT_RyvJqipncnI9foNu3ehtOmSiclrxYikT9WVPKe9C8NjVg9c9-F3NaD09s_73mQkXe_xRG9y9y9aX57ertIkU4i9I-6RJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895082649</pqid></control><display><type>article</type><title>Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lerner, Geoffrey A. ; Smirnov, Aleksey V. ; Surovitckii, Leonid V. ; Piispa, Elisa J.</creator><creatorcontrib>Lerner, Geoffrey A. ; Smirnov, Aleksey V. ; Surovitckii, Leonid V. ; Piispa, Elisa J.</creatorcontrib><description>Nonheating paleointensity methods utilize an anhysteretic remanent magnetization (ARM) or a saturation isothermal remanent magnetization to model the natural thermal remanent magnetization (TRM) to avoid heating‐induced alteration. We report the results of paleointensity experiments using the ARM, pseudo‐Thellier, and ratio of equivalent magnetization (REM) methods conducted to investigate their relative efficiency in recovering the true paleofield strength and to provide additional estimates of their calibration factors. The experiments on synthetic magnetite‐bearing samples representing single‐domain (SD) and pseudo‐single‐domain (PSD) magnetic states indicated that the correction factors for the ARM‐based methods depend on the magnetic grain size/domain state changing from ~6.3 (for SD grains) to ~4.1 (for ~1.5 µm PSD grains). The pseudo‐Thellier method yielded correct absolute paleointensity values when normalization by the TRM/ARM demagnetization slope was used. When applied to samples of lava flows and dikes from the ~32 kyr Lemptégy volcano (France), both the ARM and pseudo‐Thellier methods produced similar paleointensity estimates (28.0 ± 5.1 μT and 26.9 ± 4.7 μT, respectively) consistent with the available Thellier data for the 31–33 kyr time interval. The correction factors estimated from our synthetic samples for the REM (~3000) and for REMc (~1500) and REM′ (~1500) variants are consistent with the previously published estimates. However, all REM variants yielded unrealistically high estimates (>110 μT) of the paleofield strength from our natural samples. Our experimental results support ARM as a better proxy of TRM and suggest that the ARM‐based methods currently represent the best alternative to heating‐based absolute paleointensity method.
Key Points
Nonheating paleointensity methods were tested on natural and synthetic samples to determine their accuracy and precision
Anhysteretic remanent magnetization is a better proxy of thermal remanent magnetization than saturation isothermal remanent magnetization
Low pseudo‐Thellier paleointensities obtained from the ~32 kyr Lemptegy volcano are consistent with the Thellier data from coeval rocks</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2016JB013777</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>ARM method ; Calibration ; Dikes ; Domains ; Embankments ; Estimates ; geomagnetism ; Geophysics ; Grain size ; Grains ; Heating ; Lava ; Lava flows ; Magnetism ; Magnetite ; Magnetization ; Mathematical models ; Methods ; paleointensity ; paleomagnetism ; pseudo‐Thellier method ; REM method ; Remanent magnetization ; Saturation ; Strength ; Volcanoes</subject><ispartof>Journal of geophysical research. Solid earth, 2017-03, Vol.122 (3), p.1614-1633</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4623-a2daed22e20ee921d0efd3c9f29669ca0b323887a575c9cf23ffce2c00770ab13</citedby><cites>FETCH-LOGICAL-a4623-a2daed22e20ee921d0efd3c9f29669ca0b323887a575c9cf23ffce2c00770ab13</cites><orcidid>0000-0002-5054-0457 ; 0000-0002-9853-7601 ; 0000-0002-9915-5138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JB013777$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JB013777$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Lerner, Geoffrey A.</creatorcontrib><creatorcontrib>Smirnov, Aleksey V.</creatorcontrib><creatorcontrib>Surovitckii, Leonid V.</creatorcontrib><creatorcontrib>Piispa, Elisa J.</creatorcontrib><title>Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples</title><title>Journal of geophysical research. Solid earth</title><description>Nonheating paleointensity methods utilize an anhysteretic remanent magnetization (ARM) or a saturation isothermal remanent magnetization to model the natural thermal remanent magnetization (TRM) to avoid heating‐induced alteration. We report the results of paleointensity experiments using the ARM, pseudo‐Thellier, and ratio of equivalent magnetization (REM) methods conducted to investigate their relative efficiency in recovering the true paleofield strength and to provide additional estimates of their calibration factors. The experiments on synthetic magnetite‐bearing samples representing single‐domain (SD) and pseudo‐single‐domain (PSD) magnetic states indicated that the correction factors for the ARM‐based methods depend on the magnetic grain size/domain state changing from ~6.3 (for SD grains) to ~4.1 (for ~1.5 µm PSD grains). The pseudo‐Thellier method yielded correct absolute paleointensity values when normalization by the TRM/ARM demagnetization slope was used. When applied to samples of lava flows and dikes from the ~32 kyr Lemptégy volcano (France), both the ARM and pseudo‐Thellier methods produced similar paleointensity estimates (28.0 ± 5.1 μT and 26.9 ± 4.7 μT, respectively) consistent with the available Thellier data for the 31–33 kyr time interval. The correction factors estimated from our synthetic samples for the REM (~3000) and for REMc (~1500) and REM′ (~1500) variants are consistent with the previously published estimates. However, all REM variants yielded unrealistically high estimates (>110 μT) of the paleofield strength from our natural samples. Our experimental results support ARM as a better proxy of TRM and suggest that the ARM‐based methods currently represent the best alternative to heating‐based absolute paleointensity method.
Key Points
Nonheating paleointensity methods were tested on natural and synthetic samples to determine their accuracy and precision
Anhysteretic remanent magnetization is a better proxy of thermal remanent magnetization than saturation isothermal remanent magnetization
Low pseudo‐Thellier paleointensities obtained from the ~32 kyr Lemptegy volcano are consistent with the Thellier data from coeval rocks</description><subject>ARM method</subject><subject>Calibration</subject><subject>Dikes</subject><subject>Domains</subject><subject>Embankments</subject><subject>Estimates</subject><subject>geomagnetism</subject><subject>Geophysics</subject><subject>Grain size</subject><subject>Grains</subject><subject>Heating</subject><subject>Lava</subject><subject>Lava flows</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>paleointensity</subject><subject>paleomagnetism</subject><subject>pseudo‐Thellier method</subject><subject>REM method</subject><subject>Remanent magnetization</subject><subject>Saturation</subject><subject>Strength</subject><subject>Volcanoes</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KHEEQxweJkGXjLQ_Q4MVDNumPnY_25i6JUURB9DzU9NS4vfR0T7p7kL3lEXzGPEl6XJHgwdSlin_96k8VlWWfGf3KKOXfOGXF5YoyUZblQTbjrJALKfLiw2vNxMfsKIQtTVEliS1n2dO1sxuEqO0D6TFuXBtI5zyBJjgzRiQDGHTaRrRBxx1pMaLvtU0Tzp6StesH8Do4S8C2RIHRjX_ukTFMnmFn4wajVs_9NDZ6MKSHB5vEiH9-PzWYDCYS-sFg-JQddmACHr3keXb_4_vd-ufi6ub8Yn12tYBlwcUCeAvYco6cIkrOWopdK5TsuCwKqYA2gouqKiEvcyVVx0XXKeSK0rKk0DAxz072voN3v0YMse51UGgMWHRjqJmkSy6KvBT_RyvJqipncnI9foNu3ehtOmSiclrxYikT9WVPKe9C8NjVg9c9-F3NaD09s_73mQkXe_xRG9y9y9aX57ertIkU4i9I-6RJ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Lerner, Geoffrey A.</creator><creator>Smirnov, Aleksey V.</creator><creator>Surovitckii, Leonid V.</creator><creator>Piispa, Elisa J.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5054-0457</orcidid><orcidid>https://orcid.org/0000-0002-9853-7601</orcidid><orcidid>https://orcid.org/0000-0002-9915-5138</orcidid></search><sort><creationdate>201703</creationdate><title>Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples</title><author>Lerner, Geoffrey A. ; Smirnov, Aleksey V. ; Surovitckii, Leonid V. ; Piispa, Elisa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4623-a2daed22e20ee921d0efd3c9f29669ca0b323887a575c9cf23ffce2c00770ab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ARM method</topic><topic>Calibration</topic><topic>Dikes</topic><topic>Domains</topic><topic>Embankments</topic><topic>Estimates</topic><topic>geomagnetism</topic><topic>Geophysics</topic><topic>Grain size</topic><topic>Grains</topic><topic>Heating</topic><topic>Lava</topic><topic>Lava flows</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>paleointensity</topic><topic>paleomagnetism</topic><topic>pseudo‐Thellier method</topic><topic>REM method</topic><topic>Remanent magnetization</topic><topic>Saturation</topic><topic>Strength</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerner, Geoffrey A.</creatorcontrib><creatorcontrib>Smirnov, Aleksey V.</creatorcontrib><creatorcontrib>Surovitckii, Leonid V.</creatorcontrib><creatorcontrib>Piispa, Elisa J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerner, Geoffrey A.</au><au>Smirnov, Aleksey V.</au><au>Surovitckii, Leonid V.</au><au>Piispa, Elisa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2017-03</date><risdate>2017</risdate><volume>122</volume><issue>3</issue><spage>1614</spage><epage>1633</epage><pages>1614-1633</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Nonheating paleointensity methods utilize an anhysteretic remanent magnetization (ARM) or a saturation isothermal remanent magnetization to model the natural thermal remanent magnetization (TRM) to avoid heating‐induced alteration. We report the results of paleointensity experiments using the ARM, pseudo‐Thellier, and ratio of equivalent magnetization (REM) methods conducted to investigate their relative efficiency in recovering the true paleofield strength and to provide additional estimates of their calibration factors. The experiments on synthetic magnetite‐bearing samples representing single‐domain (SD) and pseudo‐single‐domain (PSD) magnetic states indicated that the correction factors for the ARM‐based methods depend on the magnetic grain size/domain state changing from ~6.3 (for SD grains) to ~4.1 (for ~1.5 µm PSD grains). The pseudo‐Thellier method yielded correct absolute paleointensity values when normalization by the TRM/ARM demagnetization slope was used. When applied to samples of lava flows and dikes from the ~32 kyr Lemptégy volcano (France), both the ARM and pseudo‐Thellier methods produced similar paleointensity estimates (28.0 ± 5.1 μT and 26.9 ± 4.7 μT, respectively) consistent with the available Thellier data for the 31–33 kyr time interval. The correction factors estimated from our synthetic samples for the REM (~3000) and for REMc (~1500) and REM′ (~1500) variants are consistent with the previously published estimates. However, all REM variants yielded unrealistically high estimates (>110 μT) of the paleofield strength from our natural samples. Our experimental results support ARM as a better proxy of TRM and suggest that the ARM‐based methods currently represent the best alternative to heating‐based absolute paleointensity method.
Key Points
Nonheating paleointensity methods were tested on natural and synthetic samples to determine their accuracy and precision
Anhysteretic remanent magnetization is a better proxy of thermal remanent magnetization than saturation isothermal remanent magnetization
Low pseudo‐Thellier paleointensities obtained from the ~32 kyr Lemptegy volcano are consistent with the Thellier data from coeval rocks</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JB013777</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5054-0457</orcidid><orcidid>https://orcid.org/0000-0002-9853-7601</orcidid><orcidid>https://orcid.org/0000-0002-9915-5138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2017-03, Vol.122 (3), p.1614-1633 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904236573 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | ARM method Calibration Dikes Domains Embankments Estimates geomagnetism Geophysics Grain size Grains Heating Lava Lava flows Magnetism Magnetite Magnetization Mathematical models Methods paleointensity paleomagnetism pseudo‐Thellier method REM method Remanent magnetization Saturation Strength Volcanoes |
title | Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite‐bearing samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonheating%20methods%20for%20absolute%20paleointensity%20determination:%20Comparison%20and%20calibration%20using%20synthetic%20and%20natural%20magnetite%E2%80%90bearing%20samples&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Lerner,%20Geoffrey%20A.&rft.date=2017-03&rft.volume=122&rft.issue=3&rft.spage=1614&rft.epage=1633&rft.pages=1614-1633&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2016JB013777&rft_dat=%3Cproquest_cross%3E1904236573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895082649&rft_id=info:pmid/&rfr_iscdi=true |