Fluctuations in the Kinetics of Linear Protein Self-Assembly

Biological systems are characterized by compartmentalization from the subcellular to the tissue level, and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become dominant an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-06, Vol.116 (25), p.258103-258103, Article 258103
Hauptverfasser: Michaels, Thomas C T, Dear, Alexander J, Kirkegaard, Julius B, Saar, Kadi L, Weitz, David A, Knowles, Tuomas P J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258103
container_issue 25
container_start_page 258103
container_title Physical review letters
container_volume 116
creator Michaels, Thomas C T
Dear, Alexander J
Kirkegaard, Julius B
Saar, Kadi L
Weitz, David A
Knowles, Tuomas P J
description Biological systems are characterized by compartmentalization from the subcellular to the tissue level, and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become dominant and lead to stochastic behavior. We present here a stochastic model of protein filament formation in small volumes. We show that two principal regimes emerge for the system behavior, a small fluctuation regime close to bulk behavior and a large fluctuation regime characterized by single rare events. Our analysis shows that in both regimes the reaction lag-time scales inversely with the system volume, unlike in bulk. Finally, we use our stochastic model to connect data from small-volume microdroplet experiments of amyloid formation to bulk aggregation rates, and show that digital analysis of an ensemble of protein aggregation reactions taking place under microconfinement provides an accurate measure of the rate of primary nucleation of protein aggregates, a process that has been challenging to quantify from conventional bulk experiments.
doi_str_mv 10.1103/PhysRevLett.116.258103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904234885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1802742454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f8957e1501dcab1f1f586907b53db1d63ba127182198bb6f73fa1fb331118f793</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK3-hZKlm9S58x5wU8SqGLD4WIeZZIZG8qiZidB_b6RV3Lm6l3PPuQc-hOaAFwCYXq03u_DsPjMX4yiIBeFqlI_QFLDUqQRgx2iKMYVUYywn6CyEd4wxEKFO0YRIqkFyMUXXq3oo4mBi1bUhqdokblzyWLUuVkVIOp9k4276ZN130Y3nF1f7dBmCa2y9O0cn3tTBXRzmDL2tbl9v7tPs6e7hZpmlBWM8pl5pLh1wDGVhLHjwXAmNpeW0tFAKag0QCYqAVtYKL6k34C2lAKC81HSGLvd_t333MbgQ86YKhatr07puCDlozAhlSvH_rQoTyQjjbLSKvbXouxB65_NtXzWm3-WA82_I-R_IoyDyPeQxOD90DLZx5W_shyr9ArVzeXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802742454</pqid></control><display><type>article</type><title>Fluctuations in the Kinetics of Linear Protein Self-Assembly</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Michaels, Thomas C T ; Dear, Alexander J ; Kirkegaard, Julius B ; Saar, Kadi L ; Weitz, David A ; Knowles, Tuomas P J</creator><creatorcontrib>Michaels, Thomas C T ; Dear, Alexander J ; Kirkegaard, Julius B ; Saar, Kadi L ; Weitz, David A ; Knowles, Tuomas P J</creatorcontrib><description>Biological systems are characterized by compartmentalization from the subcellular to the tissue level, and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become dominant and lead to stochastic behavior. We present here a stochastic model of protein filament formation in small volumes. We show that two principal regimes emerge for the system behavior, a small fluctuation regime close to bulk behavior and a large fluctuation regime characterized by single rare events. Our analysis shows that in both regimes the reaction lag-time scales inversely with the system volume, unlike in bulk. Finally, we use our stochastic model to connect data from small-volume microdroplet experiments of amyloid formation to bulk aggregation rates, and show that digital analysis of an ensemble of protein aggregation reactions taking place under microconfinement provides an accurate measure of the rate of primary nucleation of protein aggregates, a process that has been challenging to quantify from conventional bulk experiments.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.116.258103</identifier><identifier>PMID: 27391756</identifier><language>eng</language><publisher>United States</publisher><subject>Agglomeration ; Aggregates ; Amyloid - chemistry ; Fluctuation ; Formations ; Kinetics ; Nucleation ; Protein Multimerization ; Proteins ; Self assembly ; Stochastic Processes ; Stochasticity</subject><ispartof>Physical review letters, 2016-06, Vol.116 (25), p.258103-258103, Article 258103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f8957e1501dcab1f1f586907b53db1d63ba127182198bb6f73fa1fb331118f793</citedby><cites>FETCH-LOGICAL-c445t-f8957e1501dcab1f1f586907b53db1d63ba127182198bb6f73fa1fb331118f793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27391756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michaels, Thomas C T</creatorcontrib><creatorcontrib>Dear, Alexander J</creatorcontrib><creatorcontrib>Kirkegaard, Julius B</creatorcontrib><creatorcontrib>Saar, Kadi L</creatorcontrib><creatorcontrib>Weitz, David A</creatorcontrib><creatorcontrib>Knowles, Tuomas P J</creatorcontrib><title>Fluctuations in the Kinetics of Linear Protein Self-Assembly</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Biological systems are characterized by compartmentalization from the subcellular to the tissue level, and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become dominant and lead to stochastic behavior. We present here a stochastic model of protein filament formation in small volumes. We show that two principal regimes emerge for the system behavior, a small fluctuation regime close to bulk behavior and a large fluctuation regime characterized by single rare events. Our analysis shows that in both regimes the reaction lag-time scales inversely with the system volume, unlike in bulk. Finally, we use our stochastic model to connect data from small-volume microdroplet experiments of amyloid formation to bulk aggregation rates, and show that digital analysis of an ensemble of protein aggregation reactions taking place under microconfinement provides an accurate measure of the rate of primary nucleation of protein aggregates, a process that has been challenging to quantify from conventional bulk experiments.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Amyloid - chemistry</subject><subject>Fluctuation</subject><subject>Formations</subject><subject>Kinetics</subject><subject>Nucleation</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Self assembly</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AUhQdRbK3-hZKlm9S58x5wU8SqGLD4WIeZZIZG8qiZidB_b6RV3Lm6l3PPuQc-hOaAFwCYXq03u_DsPjMX4yiIBeFqlI_QFLDUqQRgx2iKMYVUYywn6CyEd4wxEKFO0YRIqkFyMUXXq3oo4mBi1bUhqdokblzyWLUuVkVIOp9k4276ZN130Y3nF1f7dBmCa2y9O0cn3tTBXRzmDL2tbl9v7tPs6e7hZpmlBWM8pl5pLh1wDGVhLHjwXAmNpeW0tFAKag0QCYqAVtYKL6k34C2lAKC81HSGLvd_t333MbgQ86YKhatr07puCDlozAhlSvH_rQoTyQjjbLSKvbXouxB65_NtXzWm3-WA82_I-R_IoyDyPeQxOD90DLZx5W_shyr9ArVzeXo</recordid><startdate>20160624</startdate><enddate>20160624</enddate><creator>Michaels, Thomas C T</creator><creator>Dear, Alexander J</creator><creator>Kirkegaard, Julius B</creator><creator>Saar, Kadi L</creator><creator>Weitz, David A</creator><creator>Knowles, Tuomas P J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160624</creationdate><title>Fluctuations in the Kinetics of Linear Protein Self-Assembly</title><author>Michaels, Thomas C T ; Dear, Alexander J ; Kirkegaard, Julius B ; Saar, Kadi L ; Weitz, David A ; Knowles, Tuomas P J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f8957e1501dcab1f1f586907b53db1d63ba127182198bb6f73fa1fb331118f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Amyloid - chemistry</topic><topic>Fluctuation</topic><topic>Formations</topic><topic>Kinetics</topic><topic>Nucleation</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Self assembly</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michaels, Thomas C T</creatorcontrib><creatorcontrib>Dear, Alexander J</creatorcontrib><creatorcontrib>Kirkegaard, Julius B</creatorcontrib><creatorcontrib>Saar, Kadi L</creatorcontrib><creatorcontrib>Weitz, David A</creatorcontrib><creatorcontrib>Knowles, Tuomas P J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michaels, Thomas C T</au><au>Dear, Alexander J</au><au>Kirkegaard, Julius B</au><au>Saar, Kadi L</au><au>Weitz, David A</au><au>Knowles, Tuomas P J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuations in the Kinetics of Linear Protein Self-Assembly</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-06-24</date><risdate>2016</risdate><volume>116</volume><issue>25</issue><spage>258103</spage><epage>258103</epage><pages>258103-258103</pages><artnum>258103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Biological systems are characterized by compartmentalization from the subcellular to the tissue level, and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become dominant and lead to stochastic behavior. We present here a stochastic model of protein filament formation in small volumes. We show that two principal regimes emerge for the system behavior, a small fluctuation regime close to bulk behavior and a large fluctuation regime characterized by single rare events. Our analysis shows that in both regimes the reaction lag-time scales inversely with the system volume, unlike in bulk. Finally, we use our stochastic model to connect data from small-volume microdroplet experiments of amyloid formation to bulk aggregation rates, and show that digital analysis of an ensemble of protein aggregation reactions taking place under microconfinement provides an accurate measure of the rate of primary nucleation of protein aggregates, a process that has been challenging to quantify from conventional bulk experiments.</abstract><cop>United States</cop><pmid>27391756</pmid><doi>10.1103/PhysRevLett.116.258103</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-06, Vol.116 (25), p.258103-258103, Article 258103
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1904234885
source MEDLINE; American Physical Society Journals
subjects Agglomeration
Aggregates
Amyloid - chemistry
Fluctuation
Formations
Kinetics
Nucleation
Protein Multimerization
Proteins
Self assembly
Stochastic Processes
Stochasticity
title Fluctuations in the Kinetics of Linear Protein Self-Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuations%20in%20the%20Kinetics%20of%20Linear%20Protein%20Self-Assembly&rft.jtitle=Physical%20review%20letters&rft.au=Michaels,%20Thomas%20C%20T&rft.date=2016-06-24&rft.volume=116&rft.issue=25&rft.spage=258103&rft.epage=258103&rft.pages=258103-258103&rft.artnum=258103&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.116.258103&rft_dat=%3Cproquest_cross%3E1802742454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802742454&rft_id=info:pmid/27391756&rfr_iscdi=true