Removable partial denture alloys processed by laser-sintering technique

Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-04, Vol.106 (3), p.1174-1185
Hauptverfasser: Alageel, Omar, Abdallah, Mohamed-Nur, Alsheghri, Ammar, Song, Jun, Caron, Eric, Tamimi, Faleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 3
container_start_page 1174
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 106
creator Alageel, Omar
Abdallah, Mohamed-Nur
Alsheghri, Ammar
Song, Jun
Caron, Eric
Tamimi, Faleh
description Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p 
doi_str_mv 10.1002/jbm.b.33929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904234171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904234171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-49d4aa09b506e2f91eff2a0431f3bf011cb8d6606f8ccc18be8e80d49b9ae8ed3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUxoMoTqcn71LwIshmXtJmzVGGTmEgiJ5Dkr5oR9rOpBX23xvd3MHT-w4_vvfxI-QC6BQoZbcr00zNlHPJ5AE5gaJgk1yWcLjPMz4ipzGuEixowY_JiJWFACn5CVm8YNN9aeMxW-vQ19pnFbb9EDDT3nebmK1DZzFGrDKzybyOGCaxbnsMdfue9Wg_2vpzwDNy5LSPeL67Y_L2cP86f5wsnxdP87vlxPKS92lMlWtNpSmoQOYkoHNM05yD48ZRAGvKSggqXGmthdJgiSWtcmmkTrHiY3K97U2z0tvYq6aOFr3XLXZDVCBpzngOM0jo1T901Q2hTesUo8ByACFkom62lA1djAGdWoe60WGjgKofvyr5VUb9-k305a5zMA1We_ZPKP8Gjl121g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012411669</pqid></control><display><type>article</type><title>Removable partial denture alloys processed by laser-sintering technique</title><source>Wiley Online Library</source><creator>Alageel, Omar ; Abdallah, Mohamed-Nur ; Alsheghri, Ammar ; Song, Jun ; Caron, Eric ; Tamimi, Faleh</creator><creatorcontrib>Alageel, Omar ; Abdallah, Mohamed-Nur ; Alsheghri, Ammar ; Song, Jun ; Caron, Eric ; Tamimi, Faleh</creatorcontrib><description>Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p &lt; 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p &lt; 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33929</identifier><identifier>PMID: 28561993</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alloy systems ; Biocompatibility ; Biomedical materials ; Casting alloys ; Chromium ; Cobalt base alloys ; Dental alloys ; Dental materials ; Dentures ; Fabrication ; Fatigue ; Fatigue strength ; Homogeneity ; Laser sintering ; Lasers ; Manufacturing industry ; Materials research ; Materials science ; Metal fatigue ; Metals ; Porosity ; Prostheses ; Rapid prototyping</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2018-04, Vol.106 (3), p.1174-1185</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-49d4aa09b506e2f91eff2a0431f3bf011cb8d6606f8ccc18be8e80d49b9ae8ed3</citedby><cites>FETCH-LOGICAL-c383t-49d4aa09b506e2f91eff2a0431f3bf011cb8d6606f8ccc18be8e80d49b9ae8ed3</cites><orcidid>0000-0003-1179-6270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28561993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alageel, Omar</creatorcontrib><creatorcontrib>Abdallah, Mohamed-Nur</creatorcontrib><creatorcontrib>Alsheghri, Ammar</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Caron, Eric</creatorcontrib><creatorcontrib>Tamimi, Faleh</creatorcontrib><title>Removable partial denture alloys processed by laser-sintering technique</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p &lt; 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p &lt; 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018.</description><subject>Alloy systems</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Casting alloys</subject><subject>Chromium</subject><subject>Cobalt base alloys</subject><subject>Dental alloys</subject><subject>Dental materials</subject><subject>Dentures</subject><subject>Fabrication</subject><subject>Fatigue</subject><subject>Fatigue strength</subject><subject>Homogeneity</subject><subject>Laser sintering</subject><subject>Lasers</subject><subject>Manufacturing industry</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Metal fatigue</subject><subject>Metals</subject><subject>Porosity</subject><subject>Prostheses</subject><subject>Rapid prototyping</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUxoMoTqcn71LwIshmXtJmzVGGTmEgiJ5Dkr5oR9rOpBX23xvd3MHT-w4_vvfxI-QC6BQoZbcr00zNlHPJ5AE5gaJgk1yWcLjPMz4ipzGuEixowY_JiJWFACn5CVm8YNN9aeMxW-vQ19pnFbb9EDDT3nebmK1DZzFGrDKzybyOGCaxbnsMdfue9Wg_2vpzwDNy5LSPeL67Y_L2cP86f5wsnxdP87vlxPKS92lMlWtNpSmoQOYkoHNM05yD48ZRAGvKSggqXGmthdJgiSWtcmmkTrHiY3K97U2z0tvYq6aOFr3XLXZDVCBpzngOM0jo1T901Q2hTesUo8ByACFkom62lA1djAGdWoe60WGjgKofvyr5VUb9-k305a5zMA1We_ZPKP8Gjl121g</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Alageel, Omar</creator><creator>Abdallah, Mohamed-Nur</creator><creator>Alsheghri, Ammar</creator><creator>Song, Jun</creator><creator>Caron, Eric</creator><creator>Tamimi, Faleh</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1179-6270</orcidid></search><sort><creationdate>20180401</creationdate><title>Removable partial denture alloys processed by laser-sintering technique</title><author>Alageel, Omar ; Abdallah, Mohamed-Nur ; Alsheghri, Ammar ; Song, Jun ; Caron, Eric ; Tamimi, Faleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-49d4aa09b506e2f91eff2a0431f3bf011cb8d6606f8ccc18be8e80d49b9ae8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloy systems</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Casting alloys</topic><topic>Chromium</topic><topic>Cobalt base alloys</topic><topic>Dental alloys</topic><topic>Dental materials</topic><topic>Dentures</topic><topic>Fabrication</topic><topic>Fatigue</topic><topic>Fatigue strength</topic><topic>Homogeneity</topic><topic>Laser sintering</topic><topic>Lasers</topic><topic>Manufacturing industry</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Metal fatigue</topic><topic>Metals</topic><topic>Porosity</topic><topic>Prostheses</topic><topic>Rapid prototyping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alageel, Omar</creatorcontrib><creatorcontrib>Abdallah, Mohamed-Nur</creatorcontrib><creatorcontrib>Alsheghri, Ammar</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Caron, Eric</creatorcontrib><creatorcontrib>Tamimi, Faleh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alageel, Omar</au><au>Abdallah, Mohamed-Nur</au><au>Alsheghri, Ammar</au><au>Song, Jun</au><au>Caron, Eric</au><au>Tamimi, Faleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removable partial denture alloys processed by laser-sintering technique</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>106</volume><issue>3</issue><spage>1174</spage><epage>1185</epage><pages>1174-1185</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p &lt; 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p &lt; 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28561993</pmid><doi>10.1002/jbm.b.33929</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1179-6270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2018-04, Vol.106 (3), p.1174-1185
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1904234171
source Wiley Online Library
subjects Alloy systems
Biocompatibility
Biomedical materials
Casting alloys
Chromium
Cobalt base alloys
Dental alloys
Dental materials
Dentures
Fabrication
Fatigue
Fatigue strength
Homogeneity
Laser sintering
Lasers
Manufacturing industry
Materials research
Materials science
Metal fatigue
Metals
Porosity
Prostheses
Rapid prototyping
title Removable partial denture alloys processed by laser-sintering technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removable%20partial%20denture%20alloys%20processed%20by%20laser-sintering%20technique&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Alageel,%20Omar&rft.date=2018-04-01&rft.volume=106&rft.issue=3&rft.spage=1174&rft.epage=1185&rft.pages=1174-1185&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33929&rft_dat=%3Cproquest_cross%3E1904234171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012411669&rft_id=info:pmid/28561993&rfr_iscdi=true