Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15}  W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-04, Vol.118 (16), p.165001-165001, Article 165001
Hauptverfasser: Ren, G, Yan, J, Liu, J, Lan, K, Chen, Y H, Huo, W Y, Fan, Z, Zhang, X, Zheng, J, Chen, Z, Jiang, W, Chen, L, Tang, Q, Yuan, Z, Wang, F, Jiang, S, Ding, Y, Zhang, W, He, X T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15}  W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.118.165001