Phase diagram for droplet impact on superheated surfaces
We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasin...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505 |
---|---|
container_issue | |
container_start_page | 022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505 |
container_title | Journal of fluid mechanics |
container_volume | 779 |
creator | Staat, Hendrik J. J. Tran, Tuan Geerdink, Bart Riboux, Guillaume Sun, Chao Gordillo, José Manuel Lohse, Detlef |
description | We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number
$\mathit{We}$
versus surface temperature
$T$
. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing
$\mathit{We}$
, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing
$T$
. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature
$T_{L}$
to the Leidenfrost state depends weakly, at most, on
$\mathit{We}$
in the parameter regime of the present study, the transition Weber number
$\mathit{We}_{C}$
towards splashing shows a strong dependence on
$T$
and a discontinuity at
$T_{L}$
. We quantitatively explain the splashing transition for
$T |
doi_str_mv | 10.1017/jfm.2015.465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904228857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_465</cupid><sourcerecordid>1891877337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</originalsourceid><addsrcrecordid>eNqF0LFOwzAQBmALgUQpbDxAJBYGEny2E9sjqiggVYIBZstxzm2qpAl2MvD2pGoHhJCY7obvful-Qq6BZkBB3m99mzEKeSaK_ITMQBQ6lYXIT8mMUsZSAEbPyUWMW0qBUy1nRL1tbMSkqu062DbxXUiq0PUNDknd9tYNSbdL4thj2KAdsJr24K3DeEnOvG0iXh3nnHwsH98Xz-nq9ell8bBKnZBsSB2rNCuQ6lxK5KJUumRMMK0ECqq85tqVwBznCoWXVImSK1bm4LkFCdzxObk95Pah-xwxDqato8OmsTvsxmhAU8GYUrn8nyoNSkrO9_TmF912Y9hNj0xKCQ4KaD6pu4NyoYsxoDd9qFsbvgxQs2_cTI2bfeNmanzi2ZHbtgx1tcYfqX8dfAOuG3_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884318105</pqid></control><display><type>article</type><title>Phase diagram for droplet impact on superheated surfaces</title><source>Cambridge University Press Journals Complete</source><creator>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</creator><creatorcontrib>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</creatorcontrib><description>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number
$\mathit{We}$
versus surface temperature
$T$
. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing
$\mathit{We}$
, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing
$T$
. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature
$T_{L}$
to the Leidenfrost state depends weakly, at most, on
$\mathit{We}$
in the parameter regime of the present study, the transition Weber number
$\mathit{We}_{C}$
towards splashing shows a strong dependence on
$T$
and a discontinuity at
$T_{L}$
. We quantitatively explain the splashing transition for
$T<T_{L}$
by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.465</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Contact ; Droplets ; Ethanol ; Ethyl alcohol ; Fluid mechanics ; Parameters ; Phase diagrams ; Physical properties ; Rapids ; Splashing ; Surface temperature ; Temperature ; Transition temperatures ; Weber number</subject><ispartof>Journal of fluid mechanics, 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</citedby><cites>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015004656/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Staat, Hendrik J. J.</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><creatorcontrib>Geerdink, Bart</creatorcontrib><creatorcontrib>Riboux, Guillaume</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Gordillo, José Manuel</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><title>Phase diagram for droplet impact on superheated surfaces</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number
$\mathit{We}$
versus surface temperature
$T$
. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing
$\mathit{We}$
, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing
$T$
. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature
$T_{L}$
to the Leidenfrost state depends weakly, at most, on
$\mathit{We}$
in the parameter regime of the present study, the transition Weber number
$\mathit{We}_{C}$
towards splashing shows a strong dependence on
$T$
and a discontinuity at
$T_{L}$
. We quantitatively explain the splashing transition for
$T<T_{L}$
by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</description><subject>Contact</subject><subject>Droplets</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Fluid mechanics</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Physical properties</subject><subject>Rapids</subject><subject>Splashing</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Transition temperatures</subject><subject>Weber number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0LFOwzAQBmALgUQpbDxAJBYGEny2E9sjqiggVYIBZstxzm2qpAl2MvD2pGoHhJCY7obvful-Qq6BZkBB3m99mzEKeSaK_ITMQBQ6lYXIT8mMUsZSAEbPyUWMW0qBUy1nRL1tbMSkqu062DbxXUiq0PUNDknd9tYNSbdL4thj2KAdsJr24K3DeEnOvG0iXh3nnHwsH98Xz-nq9ell8bBKnZBsSB2rNCuQ6lxK5KJUumRMMK0ECqq85tqVwBznCoWXVImSK1bm4LkFCdzxObk95Pah-xwxDqato8OmsTvsxmhAU8GYUrn8nyoNSkrO9_TmF912Y9hNj0xKCQ4KaD6pu4NyoYsxoDd9qFsbvgxQs2_cTI2bfeNmanzi2ZHbtgx1tcYfqX8dfAOuG3_e</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Staat, Hendrik J. J.</creator><creator>Tran, Tuan</creator><creator>Geerdink, Bart</creator><creator>Riboux, Guillaume</creator><creator>Sun, Chao</creator><creator>Gordillo, José Manuel</creator><creator>Lohse, Detlef</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150925</creationdate><title>Phase diagram for droplet impact on superheated surfaces</title><author>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact</topic><topic>Droplets</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Fluid mechanics</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Physical properties</topic><topic>Rapids</topic><topic>Splashing</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Transition temperatures</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staat, Hendrik J. J.</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><creatorcontrib>Geerdink, Bart</creatorcontrib><creatorcontrib>Riboux, Guillaume</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Gordillo, José Manuel</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staat, Hendrik J. J.</au><au>Tran, Tuan</au><au>Geerdink, Bart</au><au>Riboux, Guillaume</au><au>Sun, Chao</au><au>Gordillo, José Manuel</au><au>Lohse, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram for droplet impact on superheated surfaces</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>779</volume><spage>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</spage><epage>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</epage><pages>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</pages><artnum>R3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number
$\mathit{We}$
versus surface temperature
$T$
. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing
$\mathit{We}$
, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing
$T$
. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature
$T_{L}$
to the Leidenfrost state depends weakly, at most, on
$\mathit{We}$
in the parameter regime of the present study, the transition Weber number
$\mathit{We}_{C}$
towards splashing shows a strong dependence on
$T$
and a discontinuity at
$T_{L}$
. We quantitatively explain the splashing transition for
$T<T_{L}$
by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.465</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904228857 |
source | Cambridge University Press Journals Complete |
subjects | Contact Droplets Ethanol Ethyl alcohol Fluid mechanics Parameters Phase diagrams Physical properties Rapids Splashing Surface temperature Temperature Transition temperatures Weber number |
title | Phase diagram for droplet impact on superheated surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20for%20droplet%20impact%20on%20superheated%20surfaces&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Staat,%20Hendrik%20J.%20J.&rft.date=2015-09-25&rft.volume=779&rft.spage=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.epage=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.pages=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505-022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.artnum=R3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.465&rft_dat=%3Cproquest_cross%3E1891877337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884318105&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_465&rfr_iscdi=true |