Phase diagram for droplet impact on superheated surfaces

We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3
Hauptverfasser: Staat, Hendrik J. J., Tran, Tuan, Geerdink, Bart, Riboux, Guillaume, Sun, Chao, Gordillo, José Manuel, Lohse, Detlef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505
container_issue
container_start_page 022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505
container_title Journal of fluid mechanics
container_volume 779
creator Staat, Hendrik J. J.
Tran, Tuan
Geerdink, Bart
Riboux, Guillaume
Sun, Chao
Gordillo, José Manuel
Lohse, Detlef
description We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$ , and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$ . Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$ . We quantitatively explain the splashing transition for $T
doi_str_mv 10.1017/jfm.2015.465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904228857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_465</cupid><sourcerecordid>1891877337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</originalsourceid><addsrcrecordid>eNqF0LFOwzAQBmALgUQpbDxAJBYGEny2E9sjqiggVYIBZstxzm2qpAl2MvD2pGoHhJCY7obvful-Qq6BZkBB3m99mzEKeSaK_ITMQBQ6lYXIT8mMUsZSAEbPyUWMW0qBUy1nRL1tbMSkqu062DbxXUiq0PUNDknd9tYNSbdL4thj2KAdsJr24K3DeEnOvG0iXh3nnHwsH98Xz-nq9ell8bBKnZBsSB2rNCuQ6lxK5KJUumRMMK0ECqq85tqVwBznCoWXVImSK1bm4LkFCdzxObk95Pah-xwxDqato8OmsTvsxmhAU8GYUrn8nyoNSkrO9_TmF912Y9hNj0xKCQ4KaD6pu4NyoYsxoDd9qFsbvgxQs2_cTI2bfeNmanzi2ZHbtgx1tcYfqX8dfAOuG3_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884318105</pqid></control><display><type>article</type><title>Phase diagram for droplet impact on superheated surfaces</title><source>Cambridge University Press Journals Complete</source><creator>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</creator><creatorcontrib>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</creatorcontrib><description>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$ , and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$ . Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$ . We quantitatively explain the splashing transition for $T&lt;T_{L}$ by incorporating the temperature dependence of the physical properties in the theory by Riboux &amp; Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.465</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Contact ; Droplets ; Ethanol ; Ethyl alcohol ; Fluid mechanics ; Parameters ; Phase diagrams ; Physical properties ; Rapids ; Splashing ; Surface temperature ; Temperature ; Transition temperatures ; Weber number</subject><ispartof>Journal of fluid mechanics, 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</citedby><cites>FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015004656/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Staat, Hendrik J. J.</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><creatorcontrib>Geerdink, Bart</creatorcontrib><creatorcontrib>Riboux, Guillaume</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Gordillo, José Manuel</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><title>Phase diagram for droplet impact on superheated surfaces</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$ , and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$ . Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$ . We quantitatively explain the splashing transition for $T&lt;T_{L}$ by incorporating the temperature dependence of the physical properties in the theory by Riboux &amp; Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</description><subject>Contact</subject><subject>Droplets</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Fluid mechanics</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Physical properties</subject><subject>Rapids</subject><subject>Splashing</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Transition temperatures</subject><subject>Weber number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0LFOwzAQBmALgUQpbDxAJBYGEny2E9sjqiggVYIBZstxzm2qpAl2MvD2pGoHhJCY7obvful-Qq6BZkBB3m99mzEKeSaK_ITMQBQ6lYXIT8mMUsZSAEbPyUWMW0qBUy1nRL1tbMSkqu062DbxXUiq0PUNDknd9tYNSbdL4thj2KAdsJr24K3DeEnOvG0iXh3nnHwsH98Xz-nq9ell8bBKnZBsSB2rNCuQ6lxK5KJUumRMMK0ECqq85tqVwBznCoWXVImSK1bm4LkFCdzxObk95Pah-xwxDqato8OmsTvsxmhAU8GYUrn8nyoNSkrO9_TmF912Y9hNj0xKCQ4KaD6pu4NyoYsxoDd9qFsbvgxQs2_cTI2bfeNmanzi2ZHbtgx1tcYfqX8dfAOuG3_e</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Staat, Hendrik J. J.</creator><creator>Tran, Tuan</creator><creator>Geerdink, Bart</creator><creator>Riboux, Guillaume</creator><creator>Sun, Chao</creator><creator>Gordillo, José Manuel</creator><creator>Lohse, Detlef</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150925</creationdate><title>Phase diagram for droplet impact on superheated surfaces</title><author>Staat, Hendrik J. J. ; Tran, Tuan ; Geerdink, Bart ; Riboux, Guillaume ; Sun, Chao ; Gordillo, José Manuel ; Lohse, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c2d926e09577e34b89b2242984e408f939cb12c338e4f7084b382b51f3a1713c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact</topic><topic>Droplets</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Fluid mechanics</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Physical properties</topic><topic>Rapids</topic><topic>Splashing</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Transition temperatures</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staat, Hendrik J. J.</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><creatorcontrib>Geerdink, Bart</creatorcontrib><creatorcontrib>Riboux, Guillaume</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Gordillo, José Manuel</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staat, Hendrik J. J.</au><au>Tran, Tuan</au><au>Geerdink, Bart</au><au>Riboux, Guillaume</au><au>Sun, Chao</au><au>Gordillo, José Manuel</au><au>Lohse, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram for droplet impact on superheated surfaces</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>779</volume><spage>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</spage><epage>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</epage><pages>022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505</pages><artnum>R3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$ , and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$ . Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$ . We quantitatively explain the splashing transition for $T&lt;T_{L}$ by incorporating the temperature dependence of the physical properties in the theory by Riboux &amp; Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.465</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-09, Vol.779, p.022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505-022104; 264501; 036302; 074503; 054501; 134502; 024507; 24001; 036101; 036310; 184505, Article R3
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1904228857
source Cambridge University Press Journals Complete
subjects Contact
Droplets
Ethanol
Ethyl alcohol
Fluid mechanics
Parameters
Phase diagrams
Physical properties
Rapids
Splashing
Surface temperature
Temperature
Transition temperatures
Weber number
title Phase diagram for droplet impact on superheated surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20for%20droplet%20impact%20on%20superheated%20surfaces&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Staat,%20Hendrik%20J.%20J.&rft.date=2015-09-25&rft.volume=779&rft.spage=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.epage=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.pages=022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505-022104;%20264501;%20036302;%20074503;%20054501;%20134502;%20024507;%2024001;%20036101;%20036310;%20184505&rft.artnum=R3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.465&rft_dat=%3Cproquest_cross%3E1891877337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884318105&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_465&rfr_iscdi=true