Finding efficiencies in frequent pattern mining from big uncertain data

Many existing data mining algorithms search interesting patterns from transactional databases of precise data. However, there are situations in which data are uncertain. Items in each transaction of these probabilistic databases of uncertain data are usually associated with existential probabilities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2017-05, Vol.20 (3), p.571-594
Hauptverfasser: Leung, Carson Kai-Sang, MacKinnon, Richard Kyle, Jiang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 3
container_start_page 571
container_title World wide web (Bussum)
container_volume 20
creator Leung, Carson Kai-Sang
MacKinnon, Richard Kyle
Jiang, Fan
description Many existing data mining algorithms search interesting patterns from transactional databases of precise data. However, there are situations in which data are uncertain. Items in each transaction of these probabilistic databases of uncertain data are usually associated with existential probabilities, which express the likelihood of these items to be present in the transaction. When compared with mining from precise data, the search space for mining from uncertain data is much larger due to the presence of the existential probabilities. This problem is worsened as we are moving to the era of Big data. Furthermore, in many real-life applications, users may be interested in a tiny portion of this large search space for Big data mining. Without providing opportunities for users to express the interesting patterns to be mined, many existing data mining algorithms return numerous patterns—out of which only some are interesting. In this article, we propose an algorithm that allows users to express their interest in terms of constraints, uses the MapReduce model to mine uncertain Big data for frequent patterns that satisfy the user-specified anti-monotone and monotone constraints, as well as balance the load.
doi_str_mv 10.1007/s11280-016-0411-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904227957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904227957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6f031328f4dc2c6238bb8424f1c4066c6cc92a8efae19262a46839d0bbb518c53</originalsourceid><addsrcrecordid>eNp1kDFLBDEQhYMoeJ7-ALuAjc1qJsnmklIOT4UDGwW7kM0mR47b7JnsFv57s6yFCBbDTPG9x5uH0DWQOyBkdZ8BqCQVAVERDlCxE7SAesUq4MBOy82kKHf9cY4uct4TQgRTsEBPmxDbEHfYeR9scLFMxiFin9zn6OKAj2YYXIq4C3HifOo73IQdHqN1aTAFbc1gLtGZN4fsrn72Er1vHt_Wz9X29ell_bCtLONqqIQnDBiVnreWWkGZbBrJKfdgORHCCmsVNdJ540BRQQ0XkqmWNE1Tg7Q1W6Lb2feY-pIvD7oL2brDwUTXj1mDIpzSlSqvL9HNH3TfjymWdBqkLHYSBCsUzJRNfc7JeX1MoTPpSwPRU7V6rlaXavVUrZ40dNbkwsadS7-c_xV9A0T_epY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885188163</pqid></control><display><type>article</type><title>Finding efficiencies in frequent pattern mining from big uncertain data</title><source>SpringerLink Journals</source><creator>Leung, Carson Kai-Sang ; MacKinnon, Richard Kyle ; Jiang, Fan</creator><creatorcontrib>Leung, Carson Kai-Sang ; MacKinnon, Richard Kyle ; Jiang, Fan</creatorcontrib><description>Many existing data mining algorithms search interesting patterns from transactional databases of precise data. However, there are situations in which data are uncertain. Items in each transaction of these probabilistic databases of uncertain data are usually associated with existential probabilities, which express the likelihood of these items to be present in the transaction. When compared with mining from precise data, the search space for mining from uncertain data is much larger due to the presence of the existential probabilities. This problem is worsened as we are moving to the era of Big data. Furthermore, in many real-life applications, users may be interested in a tiny portion of this large search space for Big data mining. Without providing opportunities for users to express the interesting patterns to be mined, many existing data mining algorithms return numerous patterns—out of which only some are interesting. In this article, we propose an algorithm that allows users to express their interest in terms of constraints, uses the MapReduce model to mine uncertain Big data for frequent patterns that satisfy the user-specified anti-monotone and monotone constraints, as well as balance the load.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-016-0411-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Constraint modelling ; Data management ; Data mining ; Database Management ; Efficiency ; Information Systems Applications (incl.Internet) ; Operating Systems ; Searching ; User satisfaction</subject><ispartof>World wide web (Bussum), 2017-05, Vol.20 (3), p.571-594</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>World Wide Web is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6f031328f4dc2c6238bb8424f1c4066c6cc92a8efae19262a46839d0bbb518c53</citedby><cites>FETCH-LOGICAL-c349t-6f031328f4dc2c6238bb8424f1c4066c6cc92a8efae19262a46839d0bbb518c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-016-0411-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-016-0411-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Leung, Carson Kai-Sang</creatorcontrib><creatorcontrib>MacKinnon, Richard Kyle</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><title>Finding efficiencies in frequent pattern mining from big uncertain data</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Many existing data mining algorithms search interesting patterns from transactional databases of precise data. However, there are situations in which data are uncertain. Items in each transaction of these probabilistic databases of uncertain data are usually associated with existential probabilities, which express the likelihood of these items to be present in the transaction. When compared with mining from precise data, the search space for mining from uncertain data is much larger due to the presence of the existential probabilities. This problem is worsened as we are moving to the era of Big data. Furthermore, in many real-life applications, users may be interested in a tiny portion of this large search space for Big data mining. Without providing opportunities for users to express the interesting patterns to be mined, many existing data mining algorithms return numerous patterns—out of which only some are interesting. In this article, we propose an algorithm that allows users to express their interest in terms of constraints, uses the MapReduce model to mine uncertain Big data for frequent patterns that satisfy the user-specified anti-monotone and monotone constraints, as well as balance the load.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Data management</subject><subject>Data mining</subject><subject>Database Management</subject><subject>Efficiency</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Operating Systems</subject><subject>Searching</subject><subject>User satisfaction</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFLBDEQhYMoeJ7-ALuAjc1qJsnmklIOT4UDGwW7kM0mR47b7JnsFv57s6yFCBbDTPG9x5uH0DWQOyBkdZ8BqCQVAVERDlCxE7SAesUq4MBOy82kKHf9cY4uct4TQgRTsEBPmxDbEHfYeR9scLFMxiFin9zn6OKAj2YYXIq4C3HifOo73IQdHqN1aTAFbc1gLtGZN4fsrn72Er1vHt_Wz9X29ell_bCtLONqqIQnDBiVnreWWkGZbBrJKfdgORHCCmsVNdJ540BRQQ0XkqmWNE1Tg7Q1W6Lb2feY-pIvD7oL2brDwUTXj1mDIpzSlSqvL9HNH3TfjymWdBqkLHYSBCsUzJRNfc7JeX1MoTPpSwPRU7V6rlaXavVUrZ40dNbkwsadS7-c_xV9A0T_epY</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Leung, Carson Kai-Sang</creator><creator>MacKinnon, Richard Kyle</creator><creator>Jiang, Fan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Finding efficiencies in frequent pattern mining from big uncertain data</title><author>Leung, Carson Kai-Sang ; MacKinnon, Richard Kyle ; Jiang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6f031328f4dc2c6238bb8424f1c4066c6cc92a8efae19262a46839d0bbb518c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Data management</topic><topic>Data mining</topic><topic>Database Management</topic><topic>Efficiency</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Operating Systems</topic><topic>Searching</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Carson Kai-Sang</creatorcontrib><creatorcontrib>MacKinnon, Richard Kyle</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Carson Kai-Sang</au><au>MacKinnon, Richard Kyle</au><au>Jiang, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding efficiencies in frequent pattern mining from big uncertain data</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>20</volume><issue>3</issue><spage>571</spage><epage>594</epage><pages>571-594</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Many existing data mining algorithms search interesting patterns from transactional databases of precise data. However, there are situations in which data are uncertain. Items in each transaction of these probabilistic databases of uncertain data are usually associated with existential probabilities, which express the likelihood of these items to be present in the transaction. When compared with mining from precise data, the search space for mining from uncertain data is much larger due to the presence of the existential probabilities. This problem is worsened as we are moving to the era of Big data. Furthermore, in many real-life applications, users may be interested in a tiny portion of this large search space for Big data mining. Without providing opportunities for users to express the interesting patterns to be mined, many existing data mining algorithms return numerous patterns—out of which only some are interesting. In this article, we propose an algorithm that allows users to express their interest in terms of constraints, uses the MapReduce model to mine uncertain Big data for frequent patterns that satisfy the user-specified anti-monotone and monotone constraints, as well as balance the load.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-016-0411-3</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2017-05, Vol.20 (3), p.571-594
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_miscellaneous_1904227957
source SpringerLink Journals
subjects Algorithms
Computer Science
Constraint modelling
Data management
Data mining
Database Management
Efficiency
Information Systems Applications (incl.Internet)
Operating Systems
Searching
User satisfaction
title Finding efficiencies in frequent pattern mining from big uncertain data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20efficiencies%20in%20frequent%20pattern%20mining%20from%20big%20uncertain%20data&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Leung,%20Carson%20Kai-Sang&rft.date=2017-05-01&rft.volume=20&rft.issue=3&rft.spage=571&rft.epage=594&rft.pages=571-594&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-016-0411-3&rft_dat=%3Cproquest_cross%3E1904227957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885188163&rft_id=info:pmid/&rfr_iscdi=true