Antibubbles and fine cylindrical sheets of air

Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2015-09, Vol.779, p.87-115
Hauptverfasser: Beilharz, D., Guyon, A., Li, E. Q., Thoraval, M.-J., Thoroddsen, S. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 87
container_title Journal of fluid mechanics
container_volume 779
creator Beilharz, D.
Guyon, A.
Li, E. Q.
Thoraval, M.-J.
Thoroddsen, S. T.
description Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
doi_str_mv 10.1017/jfm.2015.335
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904227588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_335</cupid><sourcerecordid>1891879071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9ef21a9979a6f65fd63928f8a45ef6c97d7e7dfa2fa7a82b0c07a5285ff44d9e3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQgOEgCq6rN39AwYsHW2fSpkmOy-IXLHjRc0jbRFP6sSbtYf-9WXYPIoKnuTwzMC8h1wgZAvL71vYZBWRZnrMTssCilCkvC3ZKFgCUpogUzslFCC0A5iD5gmSrYXLVXFWdCYkemsS6wST1rnND412tuyR8GjOFZLSJdv6SnFndBXN1nEvy_vjwtn5ON69PL-vVJq0ZyCmVxlLUUnKpS1sy25S5pMIKXTBjy1ryhhveWE2t5lrQCmrgmlHBrC2KRpp8SW4Pd7d-_JpNmFTvQm26Tg9mnINCCQWlnAnxPxUSBZfAMdKbX7QdZz_ER6ISRY4CBUR1d1C1H0Pwxqqtd732O4Wg9p1V7Kz2nVXsHHl25LqvvGs-zI-rfy18AxhOfZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884318180</pqid></control><display><type>article</type><title>Antibubbles and fine cylindrical sheets of air</title><source>Cambridge University Press Journals Complete</source><creator>Beilharz, D. ; Guyon, A. ; Li, E. Q. ; Thoraval, M.-J. ; Thoroddsen, S. T.</creator><creatorcontrib>Beilharz, D. ; Guyon, A. ; Li, E. Q. ; Thoraval, M.-J. ; Thoroddsen, S. T.</creatorcontrib><description>Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.335</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cylinders ; Fluid mechanics ; Interferometry ; Liquids ; Lubrication ; Nozzles ; Pools ; Rupture ; Sheets ; Stability ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2015-09, Vol.779, p.87-115</ispartof><rights>2015 Cambridge University Press</rights><rights>2015 Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9ef21a9979a6f65fd63928f8a45ef6c97d7e7dfa2fa7a82b0c07a5285ff44d9e3</citedby><cites>FETCH-LOGICAL-c509t-9ef21a9979a6f65fd63928f8a45ef6c97d7e7dfa2fa7a82b0c07a5285ff44d9e3</cites><orcidid>0000-0002-6590-0603 ; 0000-0001-6997-4311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015003353/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids></links><search><creatorcontrib>Beilharz, D.</creatorcontrib><creatorcontrib>Guyon, A.</creatorcontrib><creatorcontrib>Li, E. Q.</creatorcontrib><creatorcontrib>Thoraval, M.-J.</creatorcontrib><creatorcontrib>Thoroddsen, S. T.</creatorcontrib><title>Antibubbles and fine cylindrical sheets of air</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.</description><subject>Cylinders</subject><subject>Fluid mechanics</subject><subject>Interferometry</subject><subject>Liquids</subject><subject>Lubrication</subject><subject>Nozzles</subject><subject>Pools</subject><subject>Rupture</subject><subject>Sheets</subject><subject>Stability</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0E1LxDAQgOEgCq6rN39AwYsHW2fSpkmOy-IXLHjRc0jbRFP6sSbtYf-9WXYPIoKnuTwzMC8h1wgZAvL71vYZBWRZnrMTssCilCkvC3ZKFgCUpogUzslFCC0A5iD5gmSrYXLVXFWdCYkemsS6wST1rnND412tuyR8GjOFZLSJdv6SnFndBXN1nEvy_vjwtn5ON69PL-vVJq0ZyCmVxlLUUnKpS1sy25S5pMIKXTBjy1ryhhveWE2t5lrQCmrgmlHBrC2KRpp8SW4Pd7d-_JpNmFTvQm26Tg9mnINCCQWlnAnxPxUSBZfAMdKbX7QdZz_ER6ISRY4CBUR1d1C1H0Pwxqqtd732O4Wg9p1V7Kz2nVXsHHl25LqvvGs-zI-rfy18AxhOfZI</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Beilharz, D.</creator><creator>Guyon, A.</creator><creator>Li, E. Q.</creator><creator>Thoraval, M.-J.</creator><creator>Thoroddsen, S. T.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6590-0603</orcidid><orcidid>https://orcid.org/0000-0001-6997-4311</orcidid></search><sort><creationdate>20150925</creationdate><title>Antibubbles and fine cylindrical sheets of air</title><author>Beilharz, D. ; Guyon, A. ; Li, E. Q. ; Thoraval, M.-J. ; Thoroddsen, S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9ef21a9979a6f65fd63928f8a45ef6c97d7e7dfa2fa7a82b0c07a5285ff44d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cylinders</topic><topic>Fluid mechanics</topic><topic>Interferometry</topic><topic>Liquids</topic><topic>Lubrication</topic><topic>Nozzles</topic><topic>Pools</topic><topic>Rupture</topic><topic>Sheets</topic><topic>Stability</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beilharz, D.</creatorcontrib><creatorcontrib>Guyon, A.</creatorcontrib><creatorcontrib>Li, E. Q.</creatorcontrib><creatorcontrib>Thoraval, M.-J.</creatorcontrib><creatorcontrib>Thoroddsen, S. T.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beilharz, D.</au><au>Guyon, A.</au><au>Li, E. Q.</au><au>Thoraval, M.-J.</au><au>Thoroddsen, S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antibubbles and fine cylindrical sheets of air</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>779</volume><spage>87</spage><epage>115</epage><pages>87-115</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.335</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6590-0603</orcidid><orcidid>https://orcid.org/0000-0001-6997-4311</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-09, Vol.779, p.87-115
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1904227588
source Cambridge University Press Journals Complete
subjects Cylinders
Fluid mechanics
Interferometry
Liquids
Lubrication
Nozzles
Pools
Rupture
Sheets
Stability
Velocity
Viscosity
title Antibubbles and fine cylindrical sheets of air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antibubbles%20and%20fine%20cylindrical%20sheets%20of%20air&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Beilharz,%20D.&rft.date=2015-09-25&rft.volume=779&rft.spage=87&rft.epage=115&rft.pages=87-115&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.335&rft_dat=%3Cproquest_cross%3E1891879071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884318180&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_335&rfr_iscdi=true