Global equatorial plasma bubble growth rates using ionosphere data assimilation
Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Glob...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2017-03, Vol.122 (3), p.3777-3787 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3787 |
---|---|
container_issue | 3 |
container_start_page | 3777 |
container_title | Journal of geophysical research. Space physics |
container_volume | 122 |
creator | Rajesh, P. K. Lin, Charles C. H. Chen, C. H. Chen, W. H. Lin, J. T. Chou, M. Y. Chang, M. T. You, C. F. |
description | Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Global Positioning System (GPS) receivers into thermosphere ionosphere electrodynamic general circulation model, and the growth rates are calculated by using standalone model run without assimilation (control run) as well as using prior (or forecast) state output of the assimilation run. The growth rates are compared with the rate of change of total electron content index (ROTI), estimated from global network of GPS receivers, as well as all‐sky airglow observations carried out over Taiwan on the nights of 16 and 17 March 2015. In contrast to the growth rates using the control run, results using data assimilation show remarkable agreement with the ROTI. Further, the all‐sky images reveal intense plasma bubbles over Taiwan on the night of 16 March, when the corresponding assimilated growth rate is also pronounced. Similarly, the absence of plasma bubbles in the all‐sky images on the night of 17 March (St. Patrick's Day storm) is supported by smaller growth rates predicted by the assimilation model. Significant improvements in the calculated growth rates could be achieved because of the accurate updating of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
Key Points
Ionosphere data assimilation is used for the first time to compare the plasma bubble growth rate and occurrence
Assimilated growth rates agree remarkably with irregularities indicated by GPS‐ROTI and 630.0 nm all‐sky images
The improvement of zonal electric field in the assimilation mostly contributes to forecasting realistic growth rates |
doi_str_mv | 10.1002/2017JA023968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904225191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912746494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4773-d4f2ff3297a8d430d28d818ef3520d004d135b4576036c6e5f7ff94f15e35e993</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWGpvfoCAFw-u5u9ucixFq6VQED0v2d2kTclu2mSX0m9vpAriQQeGecz8eDA8AK4xuscIkQeCcLGYIkJlLs7AiOBcZpIhcv6tqUCXYBLjFqUSaYX5CKzmzlfKQb0fVO-DTXLnVGwVrIaqchqugz_0GxhUryMcou3W0PrOx91GBw0b1SuoYrStdapPhytwYZSLevI1x-D96fFt9pwtV_OX2XSZ1awoaNYwQ4yhRBZKNIyihohGYKEN5QQ1CLEGU14xXuSI5nWuuSmMkcxgrinXUtIxuD357oLfDzr2ZWtjrZ1TnfZDLLFEjBCOJf4fFRILQUXqMbj5hW79ELr0SDLEpGA5kyxRdyeqDj7GoE25C7ZV4VhiVH5mUf7MIuH0hB-s08c_2XIxf51yyhClH-QKiKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912746494</pqid></control><display><type>article</type><title>Global equatorial plasma bubble growth rates using ionosphere data assimilation</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rajesh, P. K. ; Lin, Charles C. H. ; Chen, C. H. ; Chen, W. H. ; Lin, J. T. ; Chou, M. Y. ; Chang, M. T. ; You, C. F.</creator><creatorcontrib>Rajesh, P. K. ; Lin, Charles C. H. ; Chen, C. H. ; Chen, W. H. ; Lin, J. T. ; Chou, M. Y. ; Chang, M. T. ; You, C. F.</creatorcontrib><description>Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Global Positioning System (GPS) receivers into thermosphere ionosphere electrodynamic general circulation model, and the growth rates are calculated by using standalone model run without assimilation (control run) as well as using prior (or forecast) state output of the assimilation run. The growth rates are compared with the rate of change of total electron content index (ROTI), estimated from global network of GPS receivers, as well as all‐sky airglow observations carried out over Taiwan on the nights of 16 and 17 March 2015. In contrast to the growth rates using the control run, results using data assimilation show remarkable agreement with the ROTI. Further, the all‐sky images reveal intense plasma bubbles over Taiwan on the night of 16 March, when the corresponding assimilated growth rate is also pronounced. Similarly, the absence of plasma bubbles in the all‐sky images on the night of 17 March (St. Patrick's Day storm) is supported by smaller growth rates predicted by the assimilation model. Significant improvements in the calculated growth rates could be achieved because of the accurate updating of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
Key Points
Ionosphere data assimilation is used for the first time to compare the plasma bubble growth rate and occurrence
Assimilated growth rates agree remarkably with irregularities indicated by GPS‐ROTI and 630.0 nm all‐sky images
The improvement of zonal electric field in the assimilation mostly contributes to forecasting realistic growth rates</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA023968</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Airglow ; Airglow observations ; Assimilation ; Bubbles ; Circulation ; Data assimilation ; Data collection ; Economic forecasting ; Electric fields ; equatorial plasma bubbles ; Equatorial regions ; Feasibility ; Flux ; General circulation ; Global Positioning System ; Global positioning systems ; GPS ; GPS‐ROTI ; Growth rate ; Instability ; Ionosphere ; ionosphere data assimilation ; Irregularities ; Mathematical models ; Night ; Plasma ; Plasma bubbles ; Predictions ; Receivers ; RTI growth rate ; Satellite navigation systems ; Stability ; Taylor instability ; Thermosphere ; Total Electron Content ; Weather forecasting</subject><ispartof>Journal of geophysical research. Space physics, 2017-03, Vol.122 (3), p.3777-3787</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4773-d4f2ff3297a8d430d28d818ef3520d004d135b4576036c6e5f7ff94f15e35e993</citedby><cites>FETCH-LOGICAL-c4773-d4f2ff3297a8d430d28d818ef3520d004d135b4576036c6e5f7ff94f15e35e993</cites><orcidid>0000-0001-7172-9569 ; 0000-0002-0859-7345 ; 0000-0001-7069-2434 ; 0000-0001-8955-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA023968$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA023968$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Rajesh, P. K.</creatorcontrib><creatorcontrib>Lin, Charles C. H.</creatorcontrib><creatorcontrib>Chen, C. H.</creatorcontrib><creatorcontrib>Chen, W. H.</creatorcontrib><creatorcontrib>Lin, J. T.</creatorcontrib><creatorcontrib>Chou, M. Y.</creatorcontrib><creatorcontrib>Chang, M. T.</creatorcontrib><creatorcontrib>You, C. F.</creatorcontrib><title>Global equatorial plasma bubble growth rates using ionosphere data assimilation</title><title>Journal of geophysical research. Space physics</title><description>Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Global Positioning System (GPS) receivers into thermosphere ionosphere electrodynamic general circulation model, and the growth rates are calculated by using standalone model run without assimilation (control run) as well as using prior (or forecast) state output of the assimilation run. The growth rates are compared with the rate of change of total electron content index (ROTI), estimated from global network of GPS receivers, as well as all‐sky airglow observations carried out over Taiwan on the nights of 16 and 17 March 2015. In contrast to the growth rates using the control run, results using data assimilation show remarkable agreement with the ROTI. Further, the all‐sky images reveal intense plasma bubbles over Taiwan on the night of 16 March, when the corresponding assimilated growth rate is also pronounced. Similarly, the absence of plasma bubbles in the all‐sky images on the night of 17 March (St. Patrick's Day storm) is supported by smaller growth rates predicted by the assimilation model. Significant improvements in the calculated growth rates could be achieved because of the accurate updating of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
Key Points
Ionosphere data assimilation is used for the first time to compare the plasma bubble growth rate and occurrence
Assimilated growth rates agree remarkably with irregularities indicated by GPS‐ROTI and 630.0 nm all‐sky images
The improvement of zonal electric field in the assimilation mostly contributes to forecasting realistic growth rates</description><subject>Airglow</subject><subject>Airglow observations</subject><subject>Assimilation</subject><subject>Bubbles</subject><subject>Circulation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Economic forecasting</subject><subject>Electric fields</subject><subject>equatorial plasma bubbles</subject><subject>Equatorial regions</subject><subject>Feasibility</subject><subject>Flux</subject><subject>General circulation</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GPS‐ROTI</subject><subject>Growth rate</subject><subject>Instability</subject><subject>Ionosphere</subject><subject>ionosphere data assimilation</subject><subject>Irregularities</subject><subject>Mathematical models</subject><subject>Night</subject><subject>Plasma</subject><subject>Plasma bubbles</subject><subject>Predictions</subject><subject>Receivers</subject><subject>RTI growth rate</subject><subject>Satellite navigation systems</subject><subject>Stability</subject><subject>Taylor instability</subject><subject>Thermosphere</subject><subject>Total Electron Content</subject><subject>Weather forecasting</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWGpvfoCAFw-u5u9ucixFq6VQED0v2d2kTclu2mSX0m9vpAriQQeGecz8eDA8AK4xuscIkQeCcLGYIkJlLs7AiOBcZpIhcv6tqUCXYBLjFqUSaYX5CKzmzlfKQb0fVO-DTXLnVGwVrIaqchqugz_0GxhUryMcou3W0PrOx91GBw0b1SuoYrStdapPhytwYZSLevI1x-D96fFt9pwtV_OX2XSZ1awoaNYwQ4yhRBZKNIyihohGYKEN5QQ1CLEGU14xXuSI5nWuuSmMkcxgrinXUtIxuD357oLfDzr2ZWtjrZ1TnfZDLLFEjBCOJf4fFRILQUXqMbj5hW79ELr0SDLEpGA5kyxRdyeqDj7GoE25C7ZV4VhiVH5mUf7MIuH0hB-s08c_2XIxf51yyhClH-QKiKw</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Rajesh, P. K.</creator><creator>Lin, Charles C. H.</creator><creator>Chen, C. H.</creator><creator>Chen, W. H.</creator><creator>Lin, J. T.</creator><creator>Chou, M. Y.</creator><creator>Chang, M. T.</creator><creator>You, C. F.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7172-9569</orcidid><orcidid>https://orcid.org/0000-0002-0859-7345</orcidid><orcidid>https://orcid.org/0000-0001-7069-2434</orcidid><orcidid>https://orcid.org/0000-0001-8955-8753</orcidid></search><sort><creationdate>201703</creationdate><title>Global equatorial plasma bubble growth rates using ionosphere data assimilation</title><author>Rajesh, P. K. ; Lin, Charles C. H. ; Chen, C. H. ; Chen, W. H. ; Lin, J. T. ; Chou, M. Y. ; Chang, M. T. ; You, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4773-d4f2ff3297a8d430d28d818ef3520d004d135b4576036c6e5f7ff94f15e35e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airglow</topic><topic>Airglow observations</topic><topic>Assimilation</topic><topic>Bubbles</topic><topic>Circulation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Economic forecasting</topic><topic>Electric fields</topic><topic>equatorial plasma bubbles</topic><topic>Equatorial regions</topic><topic>Feasibility</topic><topic>Flux</topic><topic>General circulation</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GPS‐ROTI</topic><topic>Growth rate</topic><topic>Instability</topic><topic>Ionosphere</topic><topic>ionosphere data assimilation</topic><topic>Irregularities</topic><topic>Mathematical models</topic><topic>Night</topic><topic>Plasma</topic><topic>Plasma bubbles</topic><topic>Predictions</topic><topic>Receivers</topic><topic>RTI growth rate</topic><topic>Satellite navigation systems</topic><topic>Stability</topic><topic>Taylor instability</topic><topic>Thermosphere</topic><topic>Total Electron Content</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajesh, P. K.</creatorcontrib><creatorcontrib>Lin, Charles C. H.</creatorcontrib><creatorcontrib>Chen, C. H.</creatorcontrib><creatorcontrib>Chen, W. H.</creatorcontrib><creatorcontrib>Lin, J. T.</creatorcontrib><creatorcontrib>Chou, M. Y.</creatorcontrib><creatorcontrib>Chang, M. T.</creatorcontrib><creatorcontrib>You, C. F.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajesh, P. K.</au><au>Lin, Charles C. H.</au><au>Chen, C. H.</au><au>Chen, W. H.</au><au>Lin, J. T.</au><au>Chou, M. Y.</au><au>Chang, M. T.</au><au>You, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global equatorial plasma bubble growth rates using ionosphere data assimilation</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-03</date><risdate>2017</risdate><volume>122</volume><issue>3</issue><spage>3777</spage><epage>3787</epage><pages>3777-3787</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Global Positioning System (GPS) receivers into thermosphere ionosphere electrodynamic general circulation model, and the growth rates are calculated by using standalone model run without assimilation (control run) as well as using prior (or forecast) state output of the assimilation run. The growth rates are compared with the rate of change of total electron content index (ROTI), estimated from global network of GPS receivers, as well as all‐sky airglow observations carried out over Taiwan on the nights of 16 and 17 March 2015. In contrast to the growth rates using the control run, results using data assimilation show remarkable agreement with the ROTI. Further, the all‐sky images reveal intense plasma bubbles over Taiwan on the night of 16 March, when the corresponding assimilated growth rate is also pronounced. Similarly, the absence of plasma bubbles in the all‐sky images on the night of 17 March (St. Patrick's Day storm) is supported by smaller growth rates predicted by the assimilation model. Significant improvements in the calculated growth rates could be achieved because of the accurate updating of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
Key Points
Ionosphere data assimilation is used for the first time to compare the plasma bubble growth rate and occurrence
Assimilated growth rates agree remarkably with irregularities indicated by GPS‐ROTI and 630.0 nm all‐sky images
The improvement of zonal electric field in the assimilation mostly contributes to forecasting realistic growth rates</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA023968</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7172-9569</orcidid><orcidid>https://orcid.org/0000-0002-0859-7345</orcidid><orcidid>https://orcid.org/0000-0001-7069-2434</orcidid><orcidid>https://orcid.org/0000-0001-8955-8753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2017-03, Vol.122 (3), p.3777-3787 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904225191 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Airglow Airglow observations Assimilation Bubbles Circulation Data assimilation Data collection Economic forecasting Electric fields equatorial plasma bubbles Equatorial regions Feasibility Flux General circulation Global Positioning System Global positioning systems GPS GPS‐ROTI Growth rate Instability Ionosphere ionosphere data assimilation Irregularities Mathematical models Night Plasma Plasma bubbles Predictions Receivers RTI growth rate Satellite navigation systems Stability Taylor instability Thermosphere Total Electron Content Weather forecasting |
title | Global equatorial plasma bubble growth rates using ionosphere data assimilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20equatorial%20plasma%20bubble%20growth%20rates%20using%20ionosphere%20data%20assimilation&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Rajesh,%20P.%20K.&rft.date=2017-03&rft.volume=122&rft.issue=3&rft.spage=3777&rft.epage=3787&rft.pages=3777-3787&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA023968&rft_dat=%3Cproquest_cross%3E1912746494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912746494&rft_id=info:pmid/&rfr_iscdi=true |