Event-chain Monte Carlo algorithms for three- and many-particle interactions

We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2017-02, Vol.117 (3), p.30001-30001
Hauptverfasser: Harland, J., Michel, M., Kampmann, T. A., Kierfeld, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30001
container_issue 3
container_start_page 30001
container_title Europhysics letters
container_volume 117
creator Harland, J.
Michel, M.
Kampmann, T. A.
Kierfeld, J.
description We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
doi_str_mv 10.1209/0295-5075/117/30001
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904223599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-48dccf6137ec91e624e7ef18e4cee13a16cd4226255a1c9a985dee4f29d2b1ba3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhF3CJxAUOYT127MTHalsoUlAPLSo3a-pMWJdsvNjeiv57vGy1SBx6Gmn0Pc_ze4y9Bf4RBDdLLoyqFW_VEqBdSs45PGMLEJ2um041z9niSLxkr1K6KwB0oBesP7-nOddujX6uvoY5U7XCOIUKpx8h-rzepGoMscrrSFRXOA_VBueHeosxezdR5Yskoss-zOk1ezHilOjN4zxh3z6dX68u6v7y85fVaV-7putysTQ4N2qQLTkDpEVDLY3QUeOIQCJoNzRCaKEUgjNoOjUQNaMwg7iFW5Qn7MPh3TVOdhv9BuODDejtxWlv9zsuORij23so7PsDu43h145SthufHE0TzhR2yYLh5ZZUxhT03X_oXdjFufzESoCSGG-MKpQ8UC6GlCKNRwfA7b4Nu8_a7rO2pQ37t42iqg8qnzL9Pkow_rS6lQXt-I3V38-u4AxubF_45SMftv9sPHXhD5uJmAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110495</pqid></control><display><type>article</type><title>Event-chain Monte Carlo algorithms for three- and many-particle interactions</title><source>IOP Publishing Journals</source><creator>Harland, J. ; Michel, M. ; Kampmann, T. A. ; Kierfeld, J.</creator><creatorcontrib>Harland, J. ; Michel, M. ; Kampmann, T. A. ; Kierfeld, J.</creatorcontrib><description>We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/117/30001</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>02.70.Tt ; 05.10.Ln ; 64.70.M ; Algorithms ; Chains (polymeric) ; Computer simulation ; Hoisting ; Mathematical analysis ; Monte Carlo methods ; Monte Carlo simulation ; Needles ; Particle interactions ; Particles ; Physics</subject><ispartof>Europhysics letters, 2017-02, Vol.117 (3), p.30001-30001</ispartof><rights>Copyright © EPLA, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-48dccf6137ec91e624e7ef18e4cee13a16cd4226255a1c9a985dee4f29d2b1ba3</citedby><cites>FETCH-LOGICAL-c488t-48dccf6137ec91e624e7ef18e4cee13a16cd4226255a1c9a985dee4f29d2b1ba3</cites><orcidid>0000-0003-4291-0638 ; 0000-0002-8837-5856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/117/30001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53825</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03019967$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harland, J.</creatorcontrib><creatorcontrib>Michel, M.</creatorcontrib><creatorcontrib>Kampmann, T. A.</creatorcontrib><creatorcontrib>Kierfeld, J.</creatorcontrib><title>Event-chain Monte Carlo algorithms for three- and many-particle interactions</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.</description><subject>02.70.Tt</subject><subject>05.10.Ln</subject><subject>64.70.M</subject><subject>Algorithms</subject><subject>Chains (polymeric)</subject><subject>Computer simulation</subject><subject>Hoisting</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Needles</subject><subject>Particle interactions</subject><subject>Particles</subject><subject>Physics</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhF3CJxAUOYT127MTHalsoUlAPLSo3a-pMWJdsvNjeiv57vGy1SBx6Gmn0Pc_ze4y9Bf4RBDdLLoyqFW_VEqBdSs45PGMLEJ2um041z9niSLxkr1K6KwB0oBesP7-nOddujX6uvoY5U7XCOIUKpx8h-rzepGoMscrrSFRXOA_VBueHeosxezdR5Yskoss-zOk1ezHilOjN4zxh3z6dX68u6v7y85fVaV-7putysTQ4N2qQLTkDpEVDLY3QUeOIQCJoNzRCaKEUgjNoOjUQNaMwg7iFW5Qn7MPh3TVOdhv9BuODDejtxWlv9zsuORij23so7PsDu43h145SthufHE0TzhR2yYLh5ZZUxhT03X_oXdjFufzESoCSGG-MKpQ8UC6GlCKNRwfA7b4Nu8_a7rO2pQ37t42iqg8qnzL9Pkow_rS6lQXt-I3V38-u4AxubF_45SMftv9sPHXhD5uJmAg</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Harland, J.</creator><creator>Michel, M.</creator><creator>Kampmann, T. A.</creator><creator>Kierfeld, J.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><general>European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4291-0638</orcidid><orcidid>https://orcid.org/0000-0002-8837-5856</orcidid></search><sort><creationdate>20170201</creationdate><title>Event-chain Monte Carlo algorithms for three- and many-particle interactions</title><author>Harland, J. ; Michel, M. ; Kampmann, T. A. ; Kierfeld, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-48dccf6137ec91e624e7ef18e4cee13a16cd4226255a1c9a985dee4f29d2b1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>02.70.Tt</topic><topic>05.10.Ln</topic><topic>64.70.M</topic><topic>Algorithms</topic><topic>Chains (polymeric)</topic><topic>Computer simulation</topic><topic>Hoisting</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Needles</topic><topic>Particle interactions</topic><topic>Particles</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harland, J.</creatorcontrib><creatorcontrib>Michel, M.</creatorcontrib><creatorcontrib>Kampmann, T. A.</creatorcontrib><creatorcontrib>Kierfeld, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harland, J.</au><au>Michel, M.</au><au>Kampmann, T. A.</au><au>Kierfeld, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-chain Monte Carlo algorithms for three- and many-particle interactions</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>117</volume><issue>3</issue><spage>30001</spage><epage>30001</epage><pages>30001-30001</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/117/30001</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4291-0638</orcidid><orcidid>https://orcid.org/0000-0002-8837-5856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2017-02, Vol.117 (3), p.30001-30001
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_miscellaneous_1904223599
source IOP Publishing Journals
subjects 02.70.Tt
05.10.Ln
64.70.M
Algorithms
Chains (polymeric)
Computer simulation
Hoisting
Mathematical analysis
Monte Carlo methods
Monte Carlo simulation
Needles
Particle interactions
Particles
Physics
title Event-chain Monte Carlo algorithms for three- and many-particle interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-chain%20Monte%20Carlo%20algorithms%20for%20three-%20and%20many-particle%20interactions&rft.jtitle=Europhysics%20letters&rft.au=Harland,%20J.&rft.date=2017-02-01&rft.volume=117&rft.issue=3&rft.spage=30001&rft.epage=30001&rft.pages=30001-30001&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/117/30001&rft_dat=%3Cproquest_iop_j%3E3110110495%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110495&rft_id=info:pmid/&rfr_iscdi=true