Estimates of the temperature flux–temperature gradient relation above a sea floor

The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-04, Vol.793, p.504-523
Hauptverfasser: Cimatoribus, Andrea A., van Haren, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue
container_start_page 504
container_title Journal of fluid mechanics
container_volume 793
creator Cimatoribus, Andrea A.
van Haren, H.
description The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid Mech., vol. 355, 1998, pp. 329–358) is reviewed and adapted to the case of a turbulent flow above a wall. Model predictions are compared with the average observational estimates of the flux, exploiting a flux estimation method proposed by Winters & D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). This estimation method enables the disentanglement of the dependence of the average flux on the height above the bottom and on the background temperature gradient. The classical N-shaped flux–gradient relation is found in the observations. The model and the observations show similar qualitative behaviour, despite the strong simplifications used in the model. The results shed light on the modulation of the temperature flux by the presence of the boundary, and support the idea of a turbulent flux following a mixing-length argument in a stratified flow. Furthermore, the results support the use of Thorpe scales close to a boundary, if sufficient averaging is performed, suggesting that the Thorpe scales are affected by the boundary in a similar way to the mixing length.
doi_str_mv 10.1017/jfm.2016.112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904221482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_112</cupid><sourcerecordid>1891877621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b57538e99d83fb7d1d72b83af2c851f234943f5dbf816c724ad999df30ea2daf3</originalsourceid><addsrcrecordid>eNqF0c1KxDAQB_AgCq6rNx-g4MWDrflqkxxlWT9gwYN6Lmk7Wbu0zZqkojffwTf0ScyyHhYRPA0MvxmY-SN0SnBGMBGXK9NnFJMiI4TuoQnhhUpFwfN9NMGY0jS28SE68n6FMWFYiQl6mPvQ9jqAT6xJwjMkAfo1OB1GB4npxrevj8_d1tLppoUhJA46HVo7JLqyr5DoxIOOA9a6Y3RgdOfh5KdO0dP1_HF2my7ub-5mV4u05rgIaZWLnElQqpHMVKIhjaCVZNrQWubEUMYVZyZvKiNJUQvKdaMiNgyDpo02bIrOt3vXzr6M4EPZt76GrtMD2NGXRGFOKeGS_k-lIlKIgpJIz37RlR3dEA-JSnJGJVYsqoutqp313oEp1y7-0b2XBJebMMoYRrkJo4xfjzz74bqvXNssYWfrXwPf0eSMrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884328093</pqid></control><display><type>article</type><title>Estimates of the temperature flux–temperature gradient relation above a sea floor</title><source>Cambridge University Press Journals Complete</source><creator>Cimatoribus, Andrea A. ; van Haren, H.</creator><creatorcontrib>Cimatoribus, Andrea A. ; van Haren, H.</creatorcontrib><description>The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid Mech., vol. 355, 1998, pp. 329–358) is reviewed and adapted to the case of a turbulent flow above a wall. Model predictions are compared with the average observational estimates of the flux, exploiting a flux estimation method proposed by Winters &amp; D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). This estimation method enables the disentanglement of the dependence of the average flux on the height above the bottom and on the background temperature gradient. The classical N-shaped flux–gradient relation is found in the observations. The model and the observations show similar qualitative behaviour, despite the strong simplifications used in the model. The results shed light on the modulation of the temperature flux by the presence of the boundary, and support the idea of a turbulent flux following a mixing-length argument in a stratified flow. Furthermore, the results support the use of Thorpe scales close to a boundary, if sufficient averaging is performed, suggesting that the Thorpe scales are affected by the boundary in a similar way to the mixing length.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.112</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundaries ; Computational fluid dynamics ; Fluctuations ; Fluid flow ; Fluid mechanics ; Flux ; Geophysics ; Mathematical models ; Ocean floor ; Stratified flow ; Temperature gradient ; Temperature gradients ; Temperature measurement ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2016-04, Vol.793, p.504-523</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b57538e99d83fb7d1d72b83af2c851f234943f5dbf816c724ad999df30ea2daf3</citedby><cites>FETCH-LOGICAL-c406t-b57538e99d83fb7d1d72b83af2c851f234943f5dbf816c724ad999df30ea2daf3</cites><orcidid>0000-0002-9966-1815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016001129/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cimatoribus, Andrea A.</creatorcontrib><creatorcontrib>van Haren, H.</creatorcontrib><title>Estimates of the temperature flux–temperature gradient relation above a sea floor</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid Mech., vol. 355, 1998, pp. 329–358) is reviewed and adapted to the case of a turbulent flow above a wall. Model predictions are compared with the average observational estimates of the flux, exploiting a flux estimation method proposed by Winters &amp; D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). This estimation method enables the disentanglement of the dependence of the average flux on the height above the bottom and on the background temperature gradient. The classical N-shaped flux–gradient relation is found in the observations. The model and the observations show similar qualitative behaviour, despite the strong simplifications used in the model. The results shed light on the modulation of the temperature flux by the presence of the boundary, and support the idea of a turbulent flux following a mixing-length argument in a stratified flow. Furthermore, the results support the use of Thorpe scales close to a boundary, if sufficient averaging is performed, suggesting that the Thorpe scales are affected by the boundary in a similar way to the mixing length.</description><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Flux</subject><subject>Geophysics</subject><subject>Mathematical models</subject><subject>Ocean floor</subject><subject>Stratified flow</subject><subject>Temperature gradient</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c1KxDAQB_AgCq6rNx-g4MWDrflqkxxlWT9gwYN6Lmk7Wbu0zZqkojffwTf0ScyyHhYRPA0MvxmY-SN0SnBGMBGXK9NnFJMiI4TuoQnhhUpFwfN9NMGY0jS28SE68n6FMWFYiQl6mPvQ9jqAT6xJwjMkAfo1OB1GB4npxrevj8_d1tLppoUhJA46HVo7JLqyr5DoxIOOA9a6Y3RgdOfh5KdO0dP1_HF2my7ub-5mV4u05rgIaZWLnElQqpHMVKIhjaCVZNrQWubEUMYVZyZvKiNJUQvKdaMiNgyDpo02bIrOt3vXzr6M4EPZt76GrtMD2NGXRGFOKeGS_k-lIlKIgpJIz37RlR3dEA-JSnJGJVYsqoutqp313oEp1y7-0b2XBJebMMoYRrkJo4xfjzz74bqvXNssYWfrXwPf0eSMrw</recordid><startdate>20160425</startdate><enddate>20160425</enddate><creator>Cimatoribus, Andrea A.</creator><creator>van Haren, H.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9966-1815</orcidid></search><sort><creationdate>20160425</creationdate><title>Estimates of the temperature flux–temperature gradient relation above a sea floor</title><author>Cimatoribus, Andrea A. ; van Haren, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b57538e99d83fb7d1d72b83af2c851f234943f5dbf816c724ad999df30ea2daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Flux</topic><topic>Geophysics</topic><topic>Mathematical models</topic><topic>Ocean floor</topic><topic>Stratified flow</topic><topic>Temperature gradient</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cimatoribus, Andrea A.</creatorcontrib><creatorcontrib>van Haren, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cimatoribus, Andrea A.</au><au>van Haren, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of the temperature flux–temperature gradient relation above a sea floor</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-04-25</date><risdate>2016</risdate><volume>793</volume><spage>504</spage><epage>523</epage><pages>504-523</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid Mech., vol. 355, 1998, pp. 329–358) is reviewed and adapted to the case of a turbulent flow above a wall. Model predictions are compared with the average observational estimates of the flux, exploiting a flux estimation method proposed by Winters &amp; D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). This estimation method enables the disentanglement of the dependence of the average flux on the height above the bottom and on the background temperature gradient. The classical N-shaped flux–gradient relation is found in the observations. The model and the observations show similar qualitative behaviour, despite the strong simplifications used in the model. The results shed light on the modulation of the temperature flux by the presence of the boundary, and support the idea of a turbulent flux following a mixing-length argument in a stratified flow. Furthermore, the results support the use of Thorpe scales close to a boundary, if sufficient averaging is performed, suggesting that the Thorpe scales are affected by the boundary in a similar way to the mixing length.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.112</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9966-1815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-04, Vol.793, p.504-523
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1904221482
source Cambridge University Press Journals Complete
subjects Boundaries
Computational fluid dynamics
Fluctuations
Fluid flow
Fluid mechanics
Flux
Geophysics
Mathematical models
Ocean floor
Stratified flow
Temperature gradient
Temperature gradients
Temperature measurement
Turbulence
Turbulent flow
title Estimates of the temperature flux–temperature gradient relation above a sea floor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20the%20temperature%20flux%E2%80%93temperature%20gradient%20relation%20above%20a%20sea%20floor&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Cimatoribus,%20Andrea%20A.&rft.date=2016-04-25&rft.volume=793&rft.spage=504&rft.epage=523&rft.pages=504-523&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.112&rft_dat=%3Cproquest_cross%3E1891877621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884328093&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_112&rfr_iscdi=true