Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions

Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2017-04, Vol.9 (13), p.4524-4535
Hauptverfasser: Hristov, Delyan R, Ye, Dong, de Araújo, Joao Medeiros, Ashcroft, Colby, DiPaolo, Brian, Hart, Robert, Earhart, Christopher, Lopez, Hender, Dawson, Kenneth A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4535
container_issue 13
container_start_page 4524
container_title Nanoscale
container_volume 9
creator Hristov, Delyan R
Ye, Dong
de Araújo, Joao Medeiros
Ashcroft, Colby
DiPaolo, Brian
Hart, Robert
Earhart, Christopher
Lopez, Hender
Dawson, Kenneth A
description Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis provide some insight into the physicochemical properties of particle dispersions. For nanomedicine applications the information they supply can be of limited use. For this reason, there is a need for new methodologies and instruments that can provide additional data on nanoparticle properties such as their interactions with surfaces. Nanophotonic force microscopy has been shown as a viable method for measuring the force between surfaces and individual particles in the nano-size range. Here we outline a further application of this technique to measure the size of single particles and based on these measurement build the distribution of a sample. We demonstrate its efficacy by comparing the size distribution obtained with nanophotonic force microscopy to established instruments, such as dynamic light scattering and differential centrifugal sedimentation. Our results were in good agreement to those observed with all other instruments. Furthermore, we demonstrate that the methodology developed in this work can be used to study complex particle mixtures and the surface alteration of materials. For all cases studied, we were able to obtain both the size and the interaction potential of the particles with a surface in a single measurement.
doi_str_mv 10.1039/c6nr09331k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904220626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904220626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-2fdb2a936a8aa29fde1c96949fe44cb942d8c991a79e2d6545f46bdb9ffa82703</originalsourceid><addsrcrecordid>eNqFkctOxCAUhonR6HjZ-ACmS2NS5Ta0LM3EWzSaGF03lIuiLYxAF-NT-YhSRyfRjRsOHL585PADsI_gMYKEn0jmAuSEoNc1MMGQwpKQCq-v9oxuge0YXyBknDCyCbZwTVDF63oCPh6jdU_FuHS6cML5uQjJynxIQcjX8dK3SVinVdEulsSzT95ZWRgfpC56K4OP0s8XRfLZ1A9dEk77IXaLQj6LrEk62Pc_-jh2lI0p2HZI1rtCOPULKeMQjMgvWJcF2ZKhuAs2jOii3vuuO-Dx_Oxhdlne3F1czU5vSkmmLJXYqBaLPK6ohcDcKI0kZ5xyoymVLadY1ZJzJCqusWJTOjWUtarlxogaV5DsgMOldx7826Bjanobpe665WgN4pBiDBlm_6N1xRFHiKKMHi3R8cti0KaZB9uLsGgQbMYwmxm7vf8K8zrDB9_eoe21WqE_6ZFPFcahLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879191141</pqid></control><display><type>article</type><title>Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hristov, Delyan R ; Ye, Dong ; de Araújo, Joao Medeiros ; Ashcroft, Colby ; DiPaolo, Brian ; Hart, Robert ; Earhart, Christopher ; Lopez, Hender ; Dawson, Kenneth A</creator><creatorcontrib>Hristov, Delyan R ; Ye, Dong ; de Araújo, Joao Medeiros ; Ashcroft, Colby ; DiPaolo, Brian ; Hart, Robert ; Earhart, Christopher ; Lopez, Hender ; Dawson, Kenneth A</creatorcontrib><description>Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis provide some insight into the physicochemical properties of particle dispersions. For nanomedicine applications the information they supply can be of limited use. For this reason, there is a need for new methodologies and instruments that can provide additional data on nanoparticle properties such as their interactions with surfaces. Nanophotonic force microscopy has been shown as a viable method for measuring the force between surfaces and individual particles in the nano-size range. Here we outline a further application of this technique to measure the size of single particles and based on these measurement build the distribution of a sample. We demonstrate its efficacy by comparing the size distribution obtained with nanophotonic force microscopy to established instruments, such as dynamic light scattering and differential centrifugal sedimentation. Our results were in good agreement to those observed with all other instruments. Furthermore, we demonstrate that the methodology developed in this work can be used to study complex particle mixtures and the surface alteration of materials. For all cases studied, we were able to obtain both the size and the interaction potential of the particles with a surface in a single measurement.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr09331k</identifier><identifier>PMID: 28317988</identifier><language>eng</language><publisher>England</publisher><subject>Dispersions ; Dynamics ; Light scattering ; Measurement methods ; Microscopy ; Nanostructure ; Sedimentation ; Tracking</subject><ispartof>Nanoscale, 2017-04, Vol.9 (13), p.4524-4535</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-2fdb2a936a8aa29fde1c96949fe44cb942d8c991a79e2d6545f46bdb9ffa82703</citedby><cites>FETCH-LOGICAL-c356t-2fdb2a936a8aa29fde1c96949fe44cb942d8c991a79e2d6545f46bdb9ffa82703</cites><orcidid>0000-0003-1083-6234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28317988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hristov, Delyan R</creatorcontrib><creatorcontrib>Ye, Dong</creatorcontrib><creatorcontrib>de Araújo, Joao Medeiros</creatorcontrib><creatorcontrib>Ashcroft, Colby</creatorcontrib><creatorcontrib>DiPaolo, Brian</creatorcontrib><creatorcontrib>Hart, Robert</creatorcontrib><creatorcontrib>Earhart, Christopher</creatorcontrib><creatorcontrib>Lopez, Hender</creatorcontrib><creatorcontrib>Dawson, Kenneth A</creatorcontrib><title>Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis provide some insight into the physicochemical properties of particle dispersions. For nanomedicine applications the information they supply can be of limited use. For this reason, there is a need for new methodologies and instruments that can provide additional data on nanoparticle properties such as their interactions with surfaces. Nanophotonic force microscopy has been shown as a viable method for measuring the force between surfaces and individual particles in the nano-size range. Here we outline a further application of this technique to measure the size of single particles and based on these measurement build the distribution of a sample. We demonstrate its efficacy by comparing the size distribution obtained with nanophotonic force microscopy to established instruments, such as dynamic light scattering and differential centrifugal sedimentation. Our results were in good agreement to those observed with all other instruments. Furthermore, we demonstrate that the methodology developed in this work can be used to study complex particle mixtures and the surface alteration of materials. For all cases studied, we were able to obtain both the size and the interaction potential of the particles with a surface in a single measurement.</description><subject>Dispersions</subject><subject>Dynamics</subject><subject>Light scattering</subject><subject>Measurement methods</subject><subject>Microscopy</subject><subject>Nanostructure</subject><subject>Sedimentation</subject><subject>Tracking</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctOxCAUhonR6HjZ-ACmS2NS5Ta0LM3EWzSaGF03lIuiLYxAF-NT-YhSRyfRjRsOHL585PADsI_gMYKEn0jmAuSEoNc1MMGQwpKQCq-v9oxuge0YXyBknDCyCbZwTVDF63oCPh6jdU_FuHS6cML5uQjJynxIQcjX8dK3SVinVdEulsSzT95ZWRgfpC56K4OP0s8XRfLZ1A9dEk77IXaLQj6LrEk62Pc_-jh2lI0p2HZI1rtCOPULKeMQjMgvWJcF2ZKhuAs2jOii3vuuO-Dx_Oxhdlne3F1czU5vSkmmLJXYqBaLPK6ohcDcKI0kZ5xyoymVLadY1ZJzJCqusWJTOjWUtarlxogaV5DsgMOldx7826Bjanobpe665WgN4pBiDBlm_6N1xRFHiKKMHi3R8cti0KaZB9uLsGgQbMYwmxm7vf8K8zrDB9_eoe21WqE_6ZFPFcahLg</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Hristov, Delyan R</creator><creator>Ye, Dong</creator><creator>de Araújo, Joao Medeiros</creator><creator>Ashcroft, Colby</creator><creator>DiPaolo, Brian</creator><creator>Hart, Robert</creator><creator>Earhart, Christopher</creator><creator>Lopez, Hender</creator><creator>Dawson, Kenneth A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1083-6234</orcidid></search><sort><creationdate>20170407</creationdate><title>Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions</title><author>Hristov, Delyan R ; Ye, Dong ; de Araújo, Joao Medeiros ; Ashcroft, Colby ; DiPaolo, Brian ; Hart, Robert ; Earhart, Christopher ; Lopez, Hender ; Dawson, Kenneth A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-2fdb2a936a8aa29fde1c96949fe44cb942d8c991a79e2d6545f46bdb9ffa82703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dispersions</topic><topic>Dynamics</topic><topic>Light scattering</topic><topic>Measurement methods</topic><topic>Microscopy</topic><topic>Nanostructure</topic><topic>Sedimentation</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hristov, Delyan R</creatorcontrib><creatorcontrib>Ye, Dong</creatorcontrib><creatorcontrib>de Araújo, Joao Medeiros</creatorcontrib><creatorcontrib>Ashcroft, Colby</creatorcontrib><creatorcontrib>DiPaolo, Brian</creatorcontrib><creatorcontrib>Hart, Robert</creatorcontrib><creatorcontrib>Earhart, Christopher</creatorcontrib><creatorcontrib>Lopez, Hender</creatorcontrib><creatorcontrib>Dawson, Kenneth A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hristov, Delyan R</au><au>Ye, Dong</au><au>de Araújo, Joao Medeiros</au><au>Ashcroft, Colby</au><au>DiPaolo, Brian</au><au>Hart, Robert</au><au>Earhart, Christopher</au><au>Lopez, Hender</au><au>Dawson, Kenneth A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>9</volume><issue>13</issue><spage>4524</spage><epage>4535</epage><pages>4524-4535</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis provide some insight into the physicochemical properties of particle dispersions. For nanomedicine applications the information they supply can be of limited use. For this reason, there is a need for new methodologies and instruments that can provide additional data on nanoparticle properties such as their interactions with surfaces. Nanophotonic force microscopy has been shown as a viable method for measuring the force between surfaces and individual particles in the nano-size range. Here we outline a further application of this technique to measure the size of single particles and based on these measurement build the distribution of a sample. We demonstrate its efficacy by comparing the size distribution obtained with nanophotonic force microscopy to established instruments, such as dynamic light scattering and differential centrifugal sedimentation. Our results were in good agreement to those observed with all other instruments. Furthermore, we demonstrate that the methodology developed in this work can be used to study complex particle mixtures and the surface alteration of materials. For all cases studied, we were able to obtain both the size and the interaction potential of the particles with a surface in a single measurement.</abstract><cop>England</cop><pmid>28317988</pmid><doi>10.1039/c6nr09331k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1083-6234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2017-04, Vol.9 (13), p.4524-4535
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1904220626
source Royal Society Of Chemistry Journals 2008-
subjects Dispersions
Dynamics
Light scattering
Measurement methods
Microscopy
Nanostructure
Sedimentation
Tracking
title Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20single%20nanoparticle%20tracking%20obtained%20by%20nanophotonic%20force%20microscopy%20to%20simultaneously%20characterize%20nanoparticle%20size%20distribution%20and%20nanoparticle-surface%20interactions&rft.jtitle=Nanoscale&rft.au=Hristov,%20Delyan%20R&rft.date=2017-04-07&rft.volume=9&rft.issue=13&rft.spage=4524&rft.epage=4535&rft.pages=4524-4535&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr09331k&rft_dat=%3Cproquest_cross%3E1904220626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879191141&rft_id=info:pmid/28317988&rfr_iscdi=true