The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System

In a waist-worn Pedestrian Navigation System (PNS) based on Dead-Reckoning (DR), heading drift caused by Micro-Electro-Mechanical System (MEMS) gyro bias is an essential factor affecting DR accuracy. Considering the characteristics of pedestrian navigation and the poor bias repeatability of MEMS gyr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of navigation 2017-05, Vol.70 (3), p.607-617
Hauptverfasser: Zhang, Yanshun, Yang, Xu, Xing, Xiangming, Wang, Zhanqing, Xiong, Yunqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 3
container_start_page 607
container_title Journal of navigation
container_volume 70
creator Zhang, Yanshun
Yang, Xu
Xing, Xiangming
Wang, Zhanqing
Xiong, Yunqiang
description In a waist-worn Pedestrian Navigation System (PNS) based on Dead-Reckoning (DR), heading drift caused by Micro-Electro-Mechanical System (MEMS) gyro bias is an essential factor affecting DR accuracy. Considering the characteristics of pedestrian navigation and the poor bias repeatability of MEMS gyros, this paper presents a standing calibration method for MEMS gyro bias. The current gyro biases for each boot can be calibrated accurately in the initial stage before walking. Since the attitude angles calculated by the output data from magnetic sensor and accelerometers do not drift, this paper applies the reverse algorithm of attitude updating to calculate the angular velocities of human motion. Then the gyro biases at each moment can be acquired by subtraction operation between the measured angular velocities from gyros and the calculated angular velocities of human motion. Finally, in order to restrain the random error caused by sensor noise, the calculated biases in the initial stage are smoothed, and consequently the optimal estimate of current gyro biases after each boot can be obtained. Still and dynamic turntable experiments and a walking experiment are performed to compare and analyse the proposed method and the Zero Angular Rate Update (ZARU) method. Experimental results show that the proposed method can also calibrate the gyro bias accurately in the case of body swaying.
doi_str_mv 10.1017/S0373463316000722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904218217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463316000722</cupid><sourcerecordid>1904218217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-67eed7f0f050204176c578b5e36e1c135632eaff1c848db754cea5098ac29f9b3</originalsourceid><addsrcrecordid>eNqFkc9LwzAcxYMoOKd_gLeAFy_V_GqSHufQKWwqdB6lpG2yZazNTFph_70Z20EU8fQ9vM97vC8PgEuMbjDC4jZHVFDGKcUcISQIOQIDzHiWCCHTYzDYyclOPwVnIawiI5lMB-B9vtQw71Rb23YBx2ptS68661o4093S1dAZOLuf5XCy9Q7eWRWgcR6O-s61rnF9gK-61qHzVrXwWX3axd6db0Onm3NwYtQ66IvDHYK3h_v5-DGZvkyexqNpUjGWdQkXWtfCIINSRBDDglepkGWqKde4wjTllGhlDK5i6boUKau0SlEmVUUyk5V0CK73uRvvPvpYp2hsqPR6rVodOxY4Q4xgSbD4H5UZlkISQiJ69QNdud638ZFISc4oZ4xFCu-pyrsQvDbFxttG-W2BUbHbpvi1TfTQg0c1pbf1Qn-L_tP1BetGjsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886436444</pqid></control><display><type>article</type><title>The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System</title><source>Cambridge University Press Journals Complete</source><creator>Zhang, Yanshun ; Yang, Xu ; Xing, Xiangming ; Wang, Zhanqing ; Xiong, Yunqiang</creator><creatorcontrib>Zhang, Yanshun ; Yang, Xu ; Xing, Xiangming ; Wang, Zhanqing ; Xiong, Yunqiang</creatorcontrib><description>In a waist-worn Pedestrian Navigation System (PNS) based on Dead-Reckoning (DR), heading drift caused by Micro-Electro-Mechanical System (MEMS) gyro bias is an essential factor affecting DR accuracy. Considering the characteristics of pedestrian navigation and the poor bias repeatability of MEMS gyros, this paper presents a standing calibration method for MEMS gyro bias. The current gyro biases for each boot can be calibrated accurately in the initial stage before walking. Since the attitude angles calculated by the output data from magnetic sensor and accelerometers do not drift, this paper applies the reverse algorithm of attitude updating to calculate the angular velocities of human motion. Then the gyro biases at each moment can be acquired by subtraction operation between the measured angular velocities from gyros and the calculated angular velocities of human motion. Finally, in order to restrain the random error caused by sensor noise, the calculated biases in the initial stage are smoothed, and consequently the optimal estimate of current gyro biases after each boot can be obtained. Still and dynamic turntable experiments and a walking experiment are performed to compare and analyse the proposed method and the Zero Angular Rate Update (ZARU) method. Experimental results show that the proposed method can also calibrate the gyro bias accurately in the case of body swaying.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463316000722</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accelerometers ; Angular velocity ; Bias ; Calibration ; Drift ; Gyroscopes ; Mathematical analysis ; Navigation ; Navigation systems ; Pedestrians ; Walking</subject><ispartof>Journal of navigation, 2017-05, Vol.70 (3), p.607-617</ispartof><rights>Copyright © The Royal Institute of Navigation 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-67eed7f0f050204176c578b5e36e1c135632eaff1c848db754cea5098ac29f9b3</citedby><cites>FETCH-LOGICAL-c449t-67eed7f0f050204176c578b5e36e1c135632eaff1c848db754cea5098ac29f9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463316000722/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Zhang, Yanshun</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Xing, Xiangming</creatorcontrib><creatorcontrib>Wang, Zhanqing</creatorcontrib><creatorcontrib>Xiong, Yunqiang</creatorcontrib><title>The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>In a waist-worn Pedestrian Navigation System (PNS) based on Dead-Reckoning (DR), heading drift caused by Micro-Electro-Mechanical System (MEMS) gyro bias is an essential factor affecting DR accuracy. Considering the characteristics of pedestrian navigation and the poor bias repeatability of MEMS gyros, this paper presents a standing calibration method for MEMS gyro bias. The current gyro biases for each boot can be calibrated accurately in the initial stage before walking. Since the attitude angles calculated by the output data from magnetic sensor and accelerometers do not drift, this paper applies the reverse algorithm of attitude updating to calculate the angular velocities of human motion. Then the gyro biases at each moment can be acquired by subtraction operation between the measured angular velocities from gyros and the calculated angular velocities of human motion. Finally, in order to restrain the random error caused by sensor noise, the calculated biases in the initial stage are smoothed, and consequently the optimal estimate of current gyro biases after each boot can be obtained. Still and dynamic turntable experiments and a walking experiment are performed to compare and analyse the proposed method and the Zero Angular Rate Update (ZARU) method. Experimental results show that the proposed method can also calibrate the gyro bias accurately in the case of body swaying.</description><subject>Accelerometers</subject><subject>Angular velocity</subject><subject>Bias</subject><subject>Calibration</subject><subject>Drift</subject><subject>Gyroscopes</subject><subject>Mathematical analysis</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Pedestrians</subject><subject>Walking</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9LwzAcxYMoOKd_gLeAFy_V_GqSHufQKWwqdB6lpG2yZazNTFph_70Z20EU8fQ9vM97vC8PgEuMbjDC4jZHVFDGKcUcISQIOQIDzHiWCCHTYzDYyclOPwVnIawiI5lMB-B9vtQw71Rb23YBx2ptS68661o4093S1dAZOLuf5XCy9Q7eWRWgcR6O-s61rnF9gK-61qHzVrXwWX3axd6db0Onm3NwYtQ66IvDHYK3h_v5-DGZvkyexqNpUjGWdQkXWtfCIINSRBDDglepkGWqKde4wjTllGhlDK5i6boUKau0SlEmVUUyk5V0CK73uRvvPvpYp2hsqPR6rVodOxY4Q4xgSbD4H5UZlkISQiJ69QNdud638ZFISc4oZ4xFCu-pyrsQvDbFxttG-W2BUbHbpvi1TfTQg0c1pbf1Qn-L_tP1BetGjsI</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zhang, Yanshun</creator><creator>Yang, Xu</creator><creator>Xing, Xiangming</creator><creator>Wang, Zhanqing</creator><creator>Xiong, Yunqiang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20170501</creationdate><title>The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System</title><author>Zhang, Yanshun ; Yang, Xu ; Xing, Xiangming ; Wang, Zhanqing ; Xiong, Yunqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-67eed7f0f050204176c578b5e36e1c135632eaff1c848db754cea5098ac29f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerometers</topic><topic>Angular velocity</topic><topic>Bias</topic><topic>Calibration</topic><topic>Drift</topic><topic>Gyroscopes</topic><topic>Mathematical analysis</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Pedestrians</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanshun</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Xing, Xiangming</creatorcontrib><creatorcontrib>Wang, Zhanqing</creatorcontrib><creatorcontrib>Xiong, Yunqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanshun</au><au>Yang, Xu</au><au>Xing, Xiangming</au><au>Wang, Zhanqing</au><au>Xiong, Yunqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>70</volume><issue>3</issue><spage>607</spage><epage>617</epage><pages>607-617</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>In a waist-worn Pedestrian Navigation System (PNS) based on Dead-Reckoning (DR), heading drift caused by Micro-Electro-Mechanical System (MEMS) gyro bias is an essential factor affecting DR accuracy. Considering the characteristics of pedestrian navigation and the poor bias repeatability of MEMS gyros, this paper presents a standing calibration method for MEMS gyro bias. The current gyro biases for each boot can be calibrated accurately in the initial stage before walking. Since the attitude angles calculated by the output data from magnetic sensor and accelerometers do not drift, this paper applies the reverse algorithm of attitude updating to calculate the angular velocities of human motion. Then the gyro biases at each moment can be acquired by subtraction operation between the measured angular velocities from gyros and the calculated angular velocities of human motion. Finally, in order to restrain the random error caused by sensor noise, the calculated biases in the initial stage are smoothed, and consequently the optimal estimate of current gyro biases after each boot can be obtained. Still and dynamic turntable experiments and a walking experiment are performed to compare and analyse the proposed method and the Zero Angular Rate Update (ZARU) method. Experimental results show that the proposed method can also calibrate the gyro bias accurately in the case of body swaying.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463316000722</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0373-4633
ispartof Journal of navigation, 2017-05, Vol.70 (3), p.607-617
issn 0373-4633
1469-7785
language eng
recordid cdi_proquest_miscellaneous_1904218217
source Cambridge University Press Journals Complete
subjects Accelerometers
Angular velocity
Bias
Calibration
Drift
Gyroscopes
Mathematical analysis
Navigation
Navigation systems
Pedestrians
Walking
title The Standing Calibration Method of MEMS Gyro Bias for Autonomous Pedestrian Navigation System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Standing%20Calibration%20Method%20of%20MEMS%20Gyro%20Bias%20for%20Autonomous%20Pedestrian%20Navigation%20System&rft.jtitle=Journal%20of%20navigation&rft.au=Zhang,%20Yanshun&rft.date=2017-05-01&rft.volume=70&rft.issue=3&rft.spage=607&rft.epage=617&rft.pages=607-617&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463316000722&rft_dat=%3Cproquest_cross%3E1904218217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886436444&rft_id=info:pmid/&rft_cupid=10_1017_S0373463316000722&rfr_iscdi=true