Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-03, Vol.122 (6), p.3573-3594
Hauptverfasser: Breider, Thomas J., Mickley, Loretta J., Jacob, Daniel J., Ge, Cui, Wang, Jun, Payer Sulprizio, Melissa, Croft, Betty, Ridley, David A., McConnell, Joseph R., Sharma, Sangeeta, Husain, Liaquat, Dutkiewicz, Vincent A., Eleftheriadis, Konstantinos, Skov, Henrik, Hopke, Phillip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3594
container_issue 6
container_start_page 3573
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Breider, Thomas J.
Mickley, Loretta J.
Jacob, Daniel J.
Ge, Cui
Wang, Jun
Payer Sulprizio, Melissa
Croft, Betty
Ridley, David A.
McConnell, Joseph R.
Sharma, Sangeeta
Husain, Liaquat
Dutkiewicz, Vincent A.
Eleftheriadis, Konstantinos
Skov, Henrik
Hopke, Phillip K.
description Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow. Key Points Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010 Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2) The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface
doi_str_mv 10.1002/2016JD025321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904215676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891881735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</originalsourceid><addsrcrecordid>eNqFkUtLXDEUgC-lQsW68wcE3Lhw2rwf7mRstWIRRKG7S25yZiZyJ5kmuYq_on_ZyIiULuzZnLP4zsd5dN0BwV8IxvQrxURenmEqGCUful1KpJlpY-THt1r9-tTtl3KPW2jMuOC73Z-f01iDB2e9HVHNEH1BISILOZU0omx9sDU8AFqk7EJcovQAGdUVoNPsanAnaJ5izWGYakgRpQVyKxuXsLXEusppk5YQg3tz1vTaix5tXr84S4gOEDEaf-52FnYssP-a97q7799u5xezq-vzH_PTq5kTWJgZk5qDso5oZQZPuVeaWwdCUU-UZ1wNngspjQBtB--Vapkabzwb_KCoYXvd0da7yen3BKX261AcjKONkKbSE4M5JUIq-X9UG6I1UUw09PAf9D5NObZFmpAIJjFh6l1Ka0W11pw36nhLuXa1kmHRb3JY2_zUE9y_fLz_--MNZ1v8MYzw9C7bX57fnLVhpGHPgd6r6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887288844</pqid></control><display><type>article</type><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</creator><creatorcontrib>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</creatorcontrib><description>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow. Key Points Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010 Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2) The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD025321</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosol-cloud interactions ; Aerosols ; aerosol‐radiation interactions ; anthropogenic ; Anthropogenic factors ; Arctic ; Arctic aerosols ; Arctic observations ; Atmosphere ; Atmospheres ; Black carbon ; Carbon ; Carbon aerosols ; Chemical transport ; Climate ; Cloud-climate relationships ; Cores ; Gas flaring ; Geophysics ; Ice ; Interactions ; Loads (forces) ; Marine ; Mass ; Northern Hemisphere ; Pollutants ; Radiation ; Radiative forcing ; Regional climates ; Snow ; Spring ; Spring (season) ; Sulfates ; Three dimensional models ; Transport ; Trends ; Troposphere ; Yields</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-03, Vol.122 (6), p.3573-3594</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</citedby><cites>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</cites><orcidid>0000-0003-2367-9661 ; 0000-0003-4641-5546 ; 0000-0002-7334-0490 ; 0000-0002-7859-3470 ; 0000-0001-9051-5240 ; 0000-0003-1167-8696 ; 0000-0003-3890-0197 ; 0000-0003-2265-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD025321$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD025321$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Breider, Thomas J.</creatorcontrib><creatorcontrib>Mickley, Loretta J.</creatorcontrib><creatorcontrib>Jacob, Daniel J.</creatorcontrib><creatorcontrib>Ge, Cui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Payer Sulprizio, Melissa</creatorcontrib><creatorcontrib>Croft, Betty</creatorcontrib><creatorcontrib>Ridley, David A.</creatorcontrib><creatorcontrib>McConnell, Joseph R.</creatorcontrib><creatorcontrib>Sharma, Sangeeta</creatorcontrib><creatorcontrib>Husain, Liaquat</creatorcontrib><creatorcontrib>Dutkiewicz, Vincent A.</creatorcontrib><creatorcontrib>Eleftheriadis, Konstantinos</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Hopke, Phillip K.</creatorcontrib><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><title>Journal of geophysical research. Atmospheres</title><description>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow. Key Points Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010 Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2) The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</description><subject>aerosol</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>aerosol‐radiation interactions</subject><subject>anthropogenic</subject><subject>Anthropogenic factors</subject><subject>Arctic</subject><subject>Arctic aerosols</subject><subject>Arctic observations</subject><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon aerosols</subject><subject>Chemical transport</subject><subject>Climate</subject><subject>Cloud-climate relationships</subject><subject>Cores</subject><subject>Gas flaring</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Interactions</subject><subject>Loads (forces)</subject><subject>Marine</subject><subject>Mass</subject><subject>Northern Hemisphere</subject><subject>Pollutants</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Regional climates</subject><subject>Snow</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Sulfates</subject><subject>Three dimensional models</subject><subject>Transport</subject><subject>Trends</subject><subject>Troposphere</subject><subject>Yields</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLXDEUgC-lQsW68wcE3Lhw2rwf7mRstWIRRKG7S25yZiZyJ5kmuYq_on_ZyIiULuzZnLP4zsd5dN0BwV8IxvQrxURenmEqGCUful1KpJlpY-THt1r9-tTtl3KPW2jMuOC73Z-f01iDB2e9HVHNEH1BISILOZU0omx9sDU8AFqk7EJcovQAGdUVoNPsanAnaJ5izWGYakgRpQVyKxuXsLXEusppk5YQg3tz1vTaix5tXr84S4gOEDEaf-52FnYssP-a97q7799u5xezq-vzH_PTq5kTWJgZk5qDso5oZQZPuVeaWwdCUU-UZ1wNngspjQBtB--Vapkabzwb_KCoYXvd0da7yen3BKX261AcjKONkKbSE4M5JUIq-X9UG6I1UUw09PAf9D5NObZFmpAIJjFh6l1Ka0W11pw36nhLuXa1kmHRb3JY2_zUE9y_fLz_--MNZ1v8MYzw9C7bX57fnLVhpGHPgd6r6A</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Breider, Thomas J.</creator><creator>Mickley, Loretta J.</creator><creator>Jacob, Daniel J.</creator><creator>Ge, Cui</creator><creator>Wang, Jun</creator><creator>Payer Sulprizio, Melissa</creator><creator>Croft, Betty</creator><creator>Ridley, David A.</creator><creator>McConnell, Joseph R.</creator><creator>Sharma, Sangeeta</creator><creator>Husain, Liaquat</creator><creator>Dutkiewicz, Vincent A.</creator><creator>Eleftheriadis, Konstantinos</creator><creator>Skov, Henrik</creator><creator>Hopke, Phillip K.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2367-9661</orcidid><orcidid>https://orcid.org/0000-0003-4641-5546</orcidid><orcidid>https://orcid.org/0000-0002-7334-0490</orcidid><orcidid>https://orcid.org/0000-0002-7859-3470</orcidid><orcidid>https://orcid.org/0000-0001-9051-5240</orcidid><orcidid>https://orcid.org/0000-0003-1167-8696</orcidid><orcidid>https://orcid.org/0000-0003-3890-0197</orcidid><orcidid>https://orcid.org/0000-0003-2265-4905</orcidid></search><sort><creationdate>20170327</creationdate><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><author>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>aerosol‐radiation interactions</topic><topic>anthropogenic</topic><topic>Anthropogenic factors</topic><topic>Arctic</topic><topic>Arctic aerosols</topic><topic>Arctic observations</topic><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon aerosols</topic><topic>Chemical transport</topic><topic>Climate</topic><topic>Cloud-climate relationships</topic><topic>Cores</topic><topic>Gas flaring</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Interactions</topic><topic>Loads (forces)</topic><topic>Marine</topic><topic>Mass</topic><topic>Northern Hemisphere</topic><topic>Pollutants</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Regional climates</topic><topic>Snow</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Sulfates</topic><topic>Three dimensional models</topic><topic>Transport</topic><topic>Trends</topic><topic>Troposphere</topic><topic>Yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breider, Thomas J.</creatorcontrib><creatorcontrib>Mickley, Loretta J.</creatorcontrib><creatorcontrib>Jacob, Daniel J.</creatorcontrib><creatorcontrib>Ge, Cui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Payer Sulprizio, Melissa</creatorcontrib><creatorcontrib>Croft, Betty</creatorcontrib><creatorcontrib>Ridley, David A.</creatorcontrib><creatorcontrib>McConnell, Joseph R.</creatorcontrib><creatorcontrib>Sharma, Sangeeta</creatorcontrib><creatorcontrib>Husain, Liaquat</creatorcontrib><creatorcontrib>Dutkiewicz, Vincent A.</creatorcontrib><creatorcontrib>Eleftheriadis, Konstantinos</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Hopke, Phillip K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breider, Thomas J.</au><au>Mickley, Loretta J.</au><au>Jacob, Daniel J.</au><au>Ge, Cui</au><au>Wang, Jun</au><au>Payer Sulprizio, Melissa</au><au>Croft, Betty</au><au>Ridley, David A.</au><au>McConnell, Joseph R.</au><au>Sharma, Sangeeta</au><au>Husain, Liaquat</au><au>Dutkiewicz, Vincent A.</au><au>Eleftheriadis, Konstantinos</au><au>Skov, Henrik</au><au>Hopke, Phillip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-03-27</date><risdate>2017</risdate><volume>122</volume><issue>6</issue><spage>3573</spage><epage>3594</epage><pages>3573-3594</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow. Key Points Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010 Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2) The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD025321</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2367-9661</orcidid><orcidid>https://orcid.org/0000-0003-4641-5546</orcidid><orcidid>https://orcid.org/0000-0002-7334-0490</orcidid><orcidid>https://orcid.org/0000-0002-7859-3470</orcidid><orcidid>https://orcid.org/0000-0001-9051-5240</orcidid><orcidid>https://orcid.org/0000-0003-1167-8696</orcidid><orcidid>https://orcid.org/0000-0003-3890-0197</orcidid><orcidid>https://orcid.org/0000-0003-2265-4905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-03, Vol.122 (6), p.3573-3594
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1904215676
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects aerosol
Aerosol-cloud interactions
Aerosols
aerosol‐radiation interactions
anthropogenic
Anthropogenic factors
Arctic
Arctic aerosols
Arctic observations
Atmosphere
Atmospheres
Black carbon
Carbon
Carbon aerosols
Chemical transport
Climate
Cloud-climate relationships
Cores
Gas flaring
Geophysics
Ice
Interactions
Loads (forces)
Marine
Mass
Northern Hemisphere
Pollutants
Radiation
Radiative forcing
Regional climates
Snow
Spring
Spring (season)
Sulfates
Three dimensional models
Transport
Trends
Troposphere
Yields
title Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidecadal%20trends%20in%20aerosol%20radiative%20forcing%20over%20the%20Arctic:%20Contribution%20of%20changes%20in%20anthropogenic%20aerosol%20to%20Arctic%20warming%20since%201980&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Breider,%20Thomas%20J.&rft.date=2017-03-27&rft.volume=122&rft.issue=6&rft.spage=3573&rft.epage=3594&rft.pages=3573-3594&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD025321&rft_dat=%3Cproquest_cross%3E1891881735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887288844&rft_id=info:pmid/&rfr_iscdi=true