Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980
Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐C...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2017-03, Vol.122 (6), p.3573-3594 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3594 |
---|---|
container_issue | 6 |
container_start_page | 3573 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 122 |
creator | Breider, Thomas J. Mickley, Loretta J. Jacob, Daniel J. Ge, Cui Wang, Jun Payer Sulprizio, Melissa Croft, Betty Ridley, David A. McConnell, Joseph R. Sharma, Sangeeta Husain, Liaquat Dutkiewicz, Vincent A. Eleftheriadis, Konstantinos Skov, Henrik Hopke, Phillip K. |
description | Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow.
Key Points
Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010
Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2)
The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface |
doi_str_mv | 10.1002/2016JD025321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904215676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891881735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</originalsourceid><addsrcrecordid>eNqFkUtLXDEUgC-lQsW68wcE3Lhw2rwf7mRstWIRRKG7S25yZiZyJ5kmuYq_on_ZyIiULuzZnLP4zsd5dN0BwV8IxvQrxURenmEqGCUful1KpJlpY-THt1r9-tTtl3KPW2jMuOC73Z-f01iDB2e9HVHNEH1BISILOZU0omx9sDU8AFqk7EJcovQAGdUVoNPsanAnaJ5izWGYakgRpQVyKxuXsLXEusppk5YQg3tz1vTaix5tXr84S4gOEDEaf-52FnYssP-a97q7799u5xezq-vzH_PTq5kTWJgZk5qDso5oZQZPuVeaWwdCUU-UZ1wNngspjQBtB--Vapkabzwb_KCoYXvd0da7yen3BKX261AcjKONkKbSE4M5JUIq-X9UG6I1UUw09PAf9D5NObZFmpAIJjFh6l1Ka0W11pw36nhLuXa1kmHRb3JY2_zUE9y_fLz_--MNZ1v8MYzw9C7bX57fnLVhpGHPgd6r6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887288844</pqid></control><display><type>article</type><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</creator><creatorcontrib>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</creatorcontrib><description>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow.
Key Points
Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010
Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2)
The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD025321</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosol-cloud interactions ; Aerosols ; aerosol‐radiation interactions ; anthropogenic ; Anthropogenic factors ; Arctic ; Arctic aerosols ; Arctic observations ; Atmosphere ; Atmospheres ; Black carbon ; Carbon ; Carbon aerosols ; Chemical transport ; Climate ; Cloud-climate relationships ; Cores ; Gas flaring ; Geophysics ; Ice ; Interactions ; Loads (forces) ; Marine ; Mass ; Northern Hemisphere ; Pollutants ; Radiation ; Radiative forcing ; Regional climates ; Snow ; Spring ; Spring (season) ; Sulfates ; Three dimensional models ; Transport ; Trends ; Troposphere ; Yields</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-03, Vol.122 (6), p.3573-3594</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</citedby><cites>FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</cites><orcidid>0000-0003-2367-9661 ; 0000-0003-4641-5546 ; 0000-0002-7334-0490 ; 0000-0002-7859-3470 ; 0000-0001-9051-5240 ; 0000-0003-1167-8696 ; 0000-0003-3890-0197 ; 0000-0003-2265-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD025321$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD025321$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Breider, Thomas J.</creatorcontrib><creatorcontrib>Mickley, Loretta J.</creatorcontrib><creatorcontrib>Jacob, Daniel J.</creatorcontrib><creatorcontrib>Ge, Cui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Payer Sulprizio, Melissa</creatorcontrib><creatorcontrib>Croft, Betty</creatorcontrib><creatorcontrib>Ridley, David A.</creatorcontrib><creatorcontrib>McConnell, Joseph R.</creatorcontrib><creatorcontrib>Sharma, Sangeeta</creatorcontrib><creatorcontrib>Husain, Liaquat</creatorcontrib><creatorcontrib>Dutkiewicz, Vincent A.</creatorcontrib><creatorcontrib>Eleftheriadis, Konstantinos</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Hopke, Phillip K.</creatorcontrib><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><title>Journal of geophysical research. Atmospheres</title><description>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow.
Key Points
Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010
Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2)
The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</description><subject>aerosol</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>aerosol‐radiation interactions</subject><subject>anthropogenic</subject><subject>Anthropogenic factors</subject><subject>Arctic</subject><subject>Arctic aerosols</subject><subject>Arctic observations</subject><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon aerosols</subject><subject>Chemical transport</subject><subject>Climate</subject><subject>Cloud-climate relationships</subject><subject>Cores</subject><subject>Gas flaring</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Interactions</subject><subject>Loads (forces)</subject><subject>Marine</subject><subject>Mass</subject><subject>Northern Hemisphere</subject><subject>Pollutants</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Regional climates</subject><subject>Snow</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Sulfates</subject><subject>Three dimensional models</subject><subject>Transport</subject><subject>Trends</subject><subject>Troposphere</subject><subject>Yields</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLXDEUgC-lQsW68wcE3Lhw2rwf7mRstWIRRKG7S25yZiZyJ5kmuYq_on_ZyIiULuzZnLP4zsd5dN0BwV8IxvQrxURenmEqGCUful1KpJlpY-THt1r9-tTtl3KPW2jMuOC73Z-f01iDB2e9HVHNEH1BISILOZU0omx9sDU8AFqk7EJcovQAGdUVoNPsanAnaJ5izWGYakgRpQVyKxuXsLXEusppk5YQg3tz1vTaix5tXr84S4gOEDEaf-52FnYssP-a97q7799u5xezq-vzH_PTq5kTWJgZk5qDso5oZQZPuVeaWwdCUU-UZ1wNngspjQBtB--Vapkabzwb_KCoYXvd0da7yen3BKX261AcjKONkKbSE4M5JUIq-X9UG6I1UUw09PAf9D5NObZFmpAIJjFh6l1Ka0W11pw36nhLuXa1kmHRb3JY2_zUE9y_fLz_--MNZ1v8MYzw9C7bX57fnLVhpGHPgd6r6A</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Breider, Thomas J.</creator><creator>Mickley, Loretta J.</creator><creator>Jacob, Daniel J.</creator><creator>Ge, Cui</creator><creator>Wang, Jun</creator><creator>Payer Sulprizio, Melissa</creator><creator>Croft, Betty</creator><creator>Ridley, David A.</creator><creator>McConnell, Joseph R.</creator><creator>Sharma, Sangeeta</creator><creator>Husain, Liaquat</creator><creator>Dutkiewicz, Vincent A.</creator><creator>Eleftheriadis, Konstantinos</creator><creator>Skov, Henrik</creator><creator>Hopke, Phillip K.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2367-9661</orcidid><orcidid>https://orcid.org/0000-0003-4641-5546</orcidid><orcidid>https://orcid.org/0000-0002-7334-0490</orcidid><orcidid>https://orcid.org/0000-0002-7859-3470</orcidid><orcidid>https://orcid.org/0000-0001-9051-5240</orcidid><orcidid>https://orcid.org/0000-0003-1167-8696</orcidid><orcidid>https://orcid.org/0000-0003-3890-0197</orcidid><orcidid>https://orcid.org/0000-0003-2265-4905</orcidid></search><sort><creationdate>20170327</creationdate><title>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</title><author>Breider, Thomas J. ; Mickley, Loretta J. ; Jacob, Daniel J. ; Ge, Cui ; Wang, Jun ; Payer Sulprizio, Melissa ; Croft, Betty ; Ridley, David A. ; McConnell, Joseph R. ; Sharma, Sangeeta ; Husain, Liaquat ; Dutkiewicz, Vincent A. ; Eleftheriadis, Konstantinos ; Skov, Henrik ; Hopke, Phillip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-3684e7ac1879bd24d784ace572d17d347bd456695e8abdd77e8a29d9d3bdb7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>aerosol‐radiation interactions</topic><topic>anthropogenic</topic><topic>Anthropogenic factors</topic><topic>Arctic</topic><topic>Arctic aerosols</topic><topic>Arctic observations</topic><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon aerosols</topic><topic>Chemical transport</topic><topic>Climate</topic><topic>Cloud-climate relationships</topic><topic>Cores</topic><topic>Gas flaring</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Interactions</topic><topic>Loads (forces)</topic><topic>Marine</topic><topic>Mass</topic><topic>Northern Hemisphere</topic><topic>Pollutants</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Regional climates</topic><topic>Snow</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Sulfates</topic><topic>Three dimensional models</topic><topic>Transport</topic><topic>Trends</topic><topic>Troposphere</topic><topic>Yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breider, Thomas J.</creatorcontrib><creatorcontrib>Mickley, Loretta J.</creatorcontrib><creatorcontrib>Jacob, Daniel J.</creatorcontrib><creatorcontrib>Ge, Cui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Payer Sulprizio, Melissa</creatorcontrib><creatorcontrib>Croft, Betty</creatorcontrib><creatorcontrib>Ridley, David A.</creatorcontrib><creatorcontrib>McConnell, Joseph R.</creatorcontrib><creatorcontrib>Sharma, Sangeeta</creatorcontrib><creatorcontrib>Husain, Liaquat</creatorcontrib><creatorcontrib>Dutkiewicz, Vincent A.</creatorcontrib><creatorcontrib>Eleftheriadis, Konstantinos</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Hopke, Phillip K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breider, Thomas J.</au><au>Mickley, Loretta J.</au><au>Jacob, Daniel J.</au><au>Ge, Cui</au><au>Wang, Jun</au><au>Payer Sulprizio, Melissa</au><au>Croft, Betty</au><au>Ridley, David A.</au><au>McConnell, Joseph R.</au><au>Sharma, Sangeeta</au><au>Husain, Liaquat</au><au>Dutkiewicz, Vincent A.</au><au>Eleftheriadis, Konstantinos</au><au>Skov, Henrik</au><au>Hopke, Phillip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-03-27</date><risdate>2017</risdate><volume>122</volume><issue>6</issue><spage>3573</spage><epage>3594</epage><pages>3573-3594</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near‐term climate‐forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS‐Chem global chemical transport model to construct a 3‐D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2–3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005–2010 Arctic shortwave radiative forcing (RF) of −0.19 ± 0.05 W m−2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (−1.17 ± 0.10 W m−2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from −0.67 ± 0.06 W m−2 to −0.19 ± 0.05 W m−2, yielding a net TOA RF of +0.48 ± 0.06 W m−2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980–2010 trends in aerosol‐radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol‐cloud interactions or BC deposition on snow.
Key Points
Observed sulfate and BC mass concentrations at Arctic surface sites and Greenland ice cores show decreases of 2–3%/yr between 1980 and 2010
Anthropogenic aerosol RF is negative in the Arctic troposphere due to a large negative RF from sulfate in spring (−1.17 ± 0.10 W m−2)
The 1980–2010 trends in aerosol‐radiation interactions over the Arctic and NH midlatitudes contributed 0.27 ± 0.04 K warming at Arctic surface</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD025321</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2367-9661</orcidid><orcidid>https://orcid.org/0000-0003-4641-5546</orcidid><orcidid>https://orcid.org/0000-0002-7334-0490</orcidid><orcidid>https://orcid.org/0000-0002-7859-3470</orcidid><orcidid>https://orcid.org/0000-0001-9051-5240</orcidid><orcidid>https://orcid.org/0000-0003-1167-8696</orcidid><orcidid>https://orcid.org/0000-0003-3890-0197</orcidid><orcidid>https://orcid.org/0000-0003-2265-4905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2017-03, Vol.122 (6), p.3573-3594 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904215676 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | aerosol Aerosol-cloud interactions Aerosols aerosol‐radiation interactions anthropogenic Anthropogenic factors Arctic Arctic aerosols Arctic observations Atmosphere Atmospheres Black carbon Carbon Carbon aerosols Chemical transport Climate Cloud-climate relationships Cores Gas flaring Geophysics Ice Interactions Loads (forces) Marine Mass Northern Hemisphere Pollutants Radiation Radiative forcing Regional climates Snow Spring Spring (season) Sulfates Three dimensional models Transport Trends Troposphere Yields |
title | Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidecadal%20trends%20in%20aerosol%20radiative%20forcing%20over%20the%20Arctic:%20Contribution%20of%20changes%20in%20anthropogenic%20aerosol%20to%20Arctic%20warming%20since%201980&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Breider,%20Thomas%20J.&rft.date=2017-03-27&rft.volume=122&rft.issue=6&rft.spage=3573&rft.epage=3594&rft.pages=3573-3594&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD025321&rft_dat=%3Cproquest_cross%3E1891881735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887288844&rft_id=info:pmid/&rfr_iscdi=true |