Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure

An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2017-04, Vol.14 (4-5), p.np-n/a
Hauptverfasser: Sigeneger, Florian, Schäfer, Jan, Weltmann, Klaus‐Dieter, Foest, Rüdiger, Loffhagen, Detlef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4-5
container_start_page np
container_title Plasma processes and polymers
container_volume 14
creator Sigeneger, Florian
Schäfer, Jan
Weltmann, Klaus‐Dieter
Foest, Rüdiger
Loffhagen, Detlef
description An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained. The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.
doi_str_mv 10.1002/ppap.201600112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904213278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895115921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhosoOI5uXQfcuOl4kjRNsiyD44VRi4zrkKapdujNZIrMzkfwGX0SO4yM4EJX58D5_p_DFwSnGCYYgFx0ne4mBHAMgDHZC0Y4xiQUIpb7u53BYXDk_RKAAhMwCpK7NrdV2TyjtkAa3bfN5_vH4sW6WlfocYbSSvtao1u7QnqFklXd-m64lgalznrfO3scHBS68vbke46Dp9nlYnodzh-ubqbJPDSRYCTMBI95xrOcWcOyyFKTWSkLyKjElFDJwDBucg0cayqiwhhOtM2xJpxkBdN0HJxvezvXvvbWr1RdemOrSje27b3CEiIyVHExoGe_0GXbu2b4TmEhGcZMDuTfFKYgKfCBmmwp41rvnS1U58pau7XCoDbe1ca72nkfAnIbeCsru_6HVmmapD_ZLxBChUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891309307</pqid></control><display><type>article</type><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</creator><creatorcontrib>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</creatorcontrib><description>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained. The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.201600112</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>argon ; Argon ions ; Atmospheric pressure ; Effluents ; fluid model ; Fragments ; Gas flow ; Gas temperature ; Heating ; HMDSO ; hydrodynamic equations ; Hydrodynamics ; Mathematical models ; Modelling ; Plasma ; Plasma enhanced chemical vapor deposition ; plasma jet ; Plasma jets ; Precursors ; Substrates</subject><ispartof>Plasma processes and polymers, 2017-04, Vol.14 (4-5), p.np-n/a</ispartof><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</citedby><cites>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.201600112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.201600112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sigeneger, Florian</creatorcontrib><creatorcontrib>Schäfer, Jan</creatorcontrib><creatorcontrib>Weltmann, Klaus‐Dieter</creatorcontrib><creatorcontrib>Foest, Rüdiger</creatorcontrib><creatorcontrib>Loffhagen, Detlef</creatorcontrib><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><title>Plasma processes and polymers</title><description>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained. The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</description><subject>argon</subject><subject>Argon ions</subject><subject>Atmospheric pressure</subject><subject>Effluents</subject><subject>fluid model</subject><subject>Fragments</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Heating</subject><subject>HMDSO</subject><subject>hydrodynamic equations</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Plasma</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>plasma jet</subject><subject>Plasma jets</subject><subject>Precursors</subject><subject>Substrates</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhosoOI5uXQfcuOl4kjRNsiyD44VRi4zrkKapdujNZIrMzkfwGX0SO4yM4EJX58D5_p_DFwSnGCYYgFx0ne4mBHAMgDHZC0Y4xiQUIpb7u53BYXDk_RKAAhMwCpK7NrdV2TyjtkAa3bfN5_vH4sW6WlfocYbSSvtao1u7QnqFklXd-m64lgalznrfO3scHBS68vbke46Dp9nlYnodzh-ubqbJPDSRYCTMBI95xrOcWcOyyFKTWSkLyKjElFDJwDBucg0cayqiwhhOtM2xJpxkBdN0HJxvezvXvvbWr1RdemOrSje27b3CEiIyVHExoGe_0GXbu2b4TmEhGcZMDuTfFKYgKfCBmmwp41rvnS1U58pau7XCoDbe1ca72nkfAnIbeCsru_6HVmmapD_ZLxBChUM</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Sigeneger, Florian</creator><creator>Schäfer, Jan</creator><creator>Weltmann, Klaus‐Dieter</creator><creator>Foest, Rüdiger</creator><creator>Loffhagen, Detlef</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201704</creationdate><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><author>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>argon</topic><topic>Argon ions</topic><topic>Atmospheric pressure</topic><topic>Effluents</topic><topic>fluid model</topic><topic>Fragments</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Heating</topic><topic>HMDSO</topic><topic>hydrodynamic equations</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Plasma</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>plasma jet</topic><topic>Plasma jets</topic><topic>Precursors</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigeneger, Florian</creatorcontrib><creatorcontrib>Schäfer, Jan</creatorcontrib><creatorcontrib>Weltmann, Klaus‐Dieter</creatorcontrib><creatorcontrib>Foest, Rüdiger</creatorcontrib><creatorcontrib>Loffhagen, Detlef</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigeneger, Florian</au><au>Schäfer, Jan</au><au>Weltmann, Klaus‐Dieter</au><au>Foest, Rüdiger</au><au>Loffhagen, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</atitle><jtitle>Plasma processes and polymers</jtitle><date>2017-04</date><risdate>2017</risdate><volume>14</volume><issue>4-5</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained. The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.201600112</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2017-04, Vol.14 (4-5), p.np-n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_miscellaneous_1904213278
source Wiley Online Library - AutoHoldings Journals
subjects argon
Argon ions
Atmospheric pressure
Effluents
fluid model
Fragments
Gas flow
Gas temperature
Heating
HMDSO
hydrodynamic equations
Hydrodynamics
Mathematical models
Modelling
Plasma
Plasma enhanced chemical vapor deposition
plasma jet
Plasma jets
Precursors
Substrates
title Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20Non%E2%80%90Thermal%20RF%20Plasma%20Jet%20at%20Atmospheric%20Pressure&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Sigeneger,%20Florian&rft.date=2017-04&rft.volume=14&rft.issue=4-5&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.201600112&rft_dat=%3Cproquest_cross%3E1895115921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891309307&rft_id=info:pmid/&rfr_iscdi=true