Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure
An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules...
Gespeichert in:
Veröffentlicht in: | Plasma processes and polymers 2017-04, Vol.14 (4-5), p.np-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4-5 |
container_start_page | np |
container_title | Plasma processes and polymers |
container_volume | 14 |
creator | Sigeneger, Florian Schäfer, Jan Weltmann, Klaus‐Dieter Foest, Rüdiger Loffhagen, Detlef |
description | An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained.
The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed. |
doi_str_mv | 10.1002/ppap.201600112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904213278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895115921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhosoOI5uXQfcuOl4kjRNsiyD44VRi4zrkKapdujNZIrMzkfwGX0SO4yM4EJX58D5_p_DFwSnGCYYgFx0ne4mBHAMgDHZC0Y4xiQUIpb7u53BYXDk_RKAAhMwCpK7NrdV2TyjtkAa3bfN5_vH4sW6WlfocYbSSvtao1u7QnqFklXd-m64lgalznrfO3scHBS68vbke46Dp9nlYnodzh-ubqbJPDSRYCTMBI95xrOcWcOyyFKTWSkLyKjElFDJwDBucg0cayqiwhhOtM2xJpxkBdN0HJxvezvXvvbWr1RdemOrSje27b3CEiIyVHExoGe_0GXbu2b4TmEhGcZMDuTfFKYgKfCBmmwp41rvnS1U58pau7XCoDbe1ca72nkfAnIbeCsru_6HVmmapD_ZLxBChUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891309307</pqid></control><display><type>article</type><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</creator><creatorcontrib>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</creatorcontrib><description>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained.
The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.201600112</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>argon ; Argon ions ; Atmospheric pressure ; Effluents ; fluid model ; Fragments ; Gas flow ; Gas temperature ; Heating ; HMDSO ; hydrodynamic equations ; Hydrodynamics ; Mathematical models ; Modelling ; Plasma ; Plasma enhanced chemical vapor deposition ; plasma jet ; Plasma jets ; Precursors ; Substrates</subject><ispartof>Plasma processes and polymers, 2017-04, Vol.14 (4-5), p.np-n/a</ispartof><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</citedby><cites>FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.201600112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.201600112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sigeneger, Florian</creatorcontrib><creatorcontrib>Schäfer, Jan</creatorcontrib><creatorcontrib>Weltmann, Klaus‐Dieter</creatorcontrib><creatorcontrib>Foest, Rüdiger</creatorcontrib><creatorcontrib>Loffhagen, Detlef</creatorcontrib><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><title>Plasma processes and polymers</title><description>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained.
The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</description><subject>argon</subject><subject>Argon ions</subject><subject>Atmospheric pressure</subject><subject>Effluents</subject><subject>fluid model</subject><subject>Fragments</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Heating</subject><subject>HMDSO</subject><subject>hydrodynamic equations</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Plasma</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>plasma jet</subject><subject>Plasma jets</subject><subject>Precursors</subject><subject>Substrates</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhosoOI5uXQfcuOl4kjRNsiyD44VRi4zrkKapdujNZIrMzkfwGX0SO4yM4EJX58D5_p_DFwSnGCYYgFx0ne4mBHAMgDHZC0Y4xiQUIpb7u53BYXDk_RKAAhMwCpK7NrdV2TyjtkAa3bfN5_vH4sW6WlfocYbSSvtao1u7QnqFklXd-m64lgalznrfO3scHBS68vbke46Dp9nlYnodzh-ubqbJPDSRYCTMBI95xrOcWcOyyFKTWSkLyKjElFDJwDBucg0cayqiwhhOtM2xJpxkBdN0HJxvezvXvvbWr1RdemOrSje27b3CEiIyVHExoGe_0GXbu2b4TmEhGcZMDuTfFKYgKfCBmmwp41rvnS1U58pau7XCoDbe1ca72nkfAnIbeCsru_6HVmmapD_ZLxBChUM</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Sigeneger, Florian</creator><creator>Schäfer, Jan</creator><creator>Weltmann, Klaus‐Dieter</creator><creator>Foest, Rüdiger</creator><creator>Loffhagen, Detlef</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201704</creationdate><title>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</title><author>Sigeneger, Florian ; Schäfer, Jan ; Weltmann, Klaus‐Dieter ; Foest, Rüdiger ; Loffhagen, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-b8767b7bd5ec5b4e3cbe99f0b391323950c57cda071a384fcc72aed1a272bf5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>argon</topic><topic>Argon ions</topic><topic>Atmospheric pressure</topic><topic>Effluents</topic><topic>fluid model</topic><topic>Fragments</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Heating</topic><topic>HMDSO</topic><topic>hydrodynamic equations</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Plasma</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>plasma jet</topic><topic>Plasma jets</topic><topic>Precursors</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigeneger, Florian</creatorcontrib><creatorcontrib>Schäfer, Jan</creatorcontrib><creatorcontrib>Weltmann, Klaus‐Dieter</creatorcontrib><creatorcontrib>Foest, Rüdiger</creatorcontrib><creatorcontrib>Loffhagen, Detlef</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigeneger, Florian</au><au>Schäfer, Jan</au><au>Weltmann, Klaus‐Dieter</au><au>Foest, Rüdiger</au><au>Loffhagen, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure</atitle><jtitle>Plasma processes and polymers</jtitle><date>2017-04</date><risdate>2017</risdate><volume>14</volume><issue>4-5</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>An RF driven non‐thermal atmospheric pressure plasma jet used for plasma enhanced chemical vapor deposition is investigated by hydrodynamic modeling. The model describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent, and the transport of precursor fragments toward the substrate. Molecular argon ions are found to be the dominant active species transported into the effluent together with slow electrons. The radial profiles of the fluxes of precursor fragments onto the substrate depend sensitively on the flow conditions. Satisfactory agreement of the calculated gas temperature with measured profiles is obtained.
The spatially two‐dimensional hydrodynamic model of the plasma jet describes the gas flow and heating, the plasma generation in the active zone, reactions of active plasma particles with precursor molecules in the effluent and the transport of precursor fragments toward the substrate. The impact of flow conditions on the radial profiles of precursor fragments is analyzed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.201600112</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-8850 |
ispartof | Plasma processes and polymers, 2017-04, Vol.14 (4-5), p.np-n/a |
issn | 1612-8850 1612-8869 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904213278 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | argon Argon ions Atmospheric pressure Effluents fluid model Fragments Gas flow Gas temperature Heating HMDSO hydrodynamic equations Hydrodynamics Mathematical models Modelling Plasma Plasma enhanced chemical vapor deposition plasma jet Plasma jets Precursors Substrates |
title | Modeling of a Non‐Thermal RF Plasma Jet at Atmospheric Pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20Non%E2%80%90Thermal%20RF%20Plasma%20Jet%20at%20Atmospheric%20Pressure&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Sigeneger,%20Florian&rft.date=2017-04&rft.volume=14&rft.issue=4-5&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.201600112&rft_dat=%3Cproquest_cross%3E1895115921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891309307&rft_id=info:pmid/&rfr_iscdi=true |