Ocean acidification and the Permo-Triassic mass extinction
Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined w...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-04, Vol.348 (6231), p.229-232 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 6231 |
container_start_page | 229 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 348 |
creator | Clarkson, M. O. Kasemann, S. A. Wood, R. A. Lenton, T. M. Daines, S. J. Richoz, S. Ohnemueller, F. Meixner, A. Poulton, S. W. Tipper, E. T. |
description | Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota. |
doi_str_mv | 10.1126/science.aaa0193 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904210604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24746804</jstor_id><sourcerecordid>24746804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a543t-cf50b635646bd1162695d115477eb5033801fe53532429556a039f116a3f25e53</originalsourceid><addsrcrecordid>eNqNkc9LwzAcxYMobk7PnpSCFy913yRNmniT4S8YzMM8lzRNMGNtZ9KC_vdmrip40dMjvM_3wctD6BTDFcaET4N2ptHmSikFWNI9NMYgWSoJ0H00BqA8FZCzEToKYQUQPUkP0YgwwSRkdIyuF9qoJlHaVc46rTrXxldTJd2LSZ6Mr9t06Z0KwemkjpKYt841eosdowOr1sGcDDpBz3e3y9lDOl_cP85u5qliGe1SbRmUnDKe8bLCmBMuWVSW5bkpGVAqAFvDKKMkI5IxroBKG0FFLWHRmKDLXe7Gt6-9CV1Ru6DNeq0a0_ahwLEJwcBjnz9RQXIh4sE_UnlOOMR_2qZe_EJXbe-b2PmTAiEozSM13VHatyF4Y4uNd7Xy7wWGYjtWMYxVDGPFi_Mhty9rU33zX-tE4GwHrELX-h8_yzMuIvABRCWXRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672088337</pqid></control><display><type>article</type><title>Ocean acidification and the Permo-Triassic mass extinction</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Clarkson, M. O. ; Kasemann, S. A. ; Wood, R. A. ; Lenton, T. M. ; Daines, S. J. ; Richoz, S. ; Ohnemueller, F. ; Meixner, A. ; Poulton, S. W. ; Tipper, E. T.</creator><creatorcontrib>Clarkson, M. O. ; Kasemann, S. A. ; Wood, R. A. ; Lenton, T. M. ; Daines, S. J. ; Richoz, S. ; Ohnemueller, F. ; Meixner, A. ; Poulton, S. W. ; Tipper, E. T.</creatorcontrib><description>Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa0193</identifier><identifier>PMID: 25859043</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Acidification ; Animals ; Aquatic Organisms ; Atmosphere ; Boron ; Buffers ; Carbon ; Carbon Cycle ; Carbon Isotopes ; Ecosystem ; Extinction, Biological ; Hydrogen-Ion Concentration ; Isotopes ; Marine ; Mass extinctions ; Oceans ; Oceans and Seas ; Sea water ; Seawater - chemistry ; Time ; Volcanic activity</subject><ispartof>Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6231), p.229-232</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a543t-cf50b635646bd1162695d115477eb5033801fe53532429556a039f116a3f25e53</citedby><cites>FETCH-LOGICAL-a543t-cf50b635646bd1162695d115477eb5033801fe53532429556a039f116a3f25e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24746804$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24746804$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25859043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarkson, M. O.</creatorcontrib><creatorcontrib>Kasemann, S. A.</creatorcontrib><creatorcontrib>Wood, R. A.</creatorcontrib><creatorcontrib>Lenton, T. M.</creatorcontrib><creatorcontrib>Daines, S. J.</creatorcontrib><creatorcontrib>Richoz, S.</creatorcontrib><creatorcontrib>Ohnemueller, F.</creatorcontrib><creatorcontrib>Meixner, A.</creatorcontrib><creatorcontrib>Poulton, S. W.</creatorcontrib><creatorcontrib>Tipper, E. T.</creatorcontrib><title>Ocean acidification and the Permo-Triassic mass extinction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.</description><subject>Acidification</subject><subject>Animals</subject><subject>Aquatic Organisms</subject><subject>Atmosphere</subject><subject>Boron</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Carbon Cycle</subject><subject>Carbon Isotopes</subject><subject>Ecosystem</subject><subject>Extinction, Biological</subject><subject>Hydrogen-Ion Concentration</subject><subject>Isotopes</subject><subject>Marine</subject><subject>Mass extinctions</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Sea water</subject><subject>Seawater - chemistry</subject><subject>Time</subject><subject>Volcanic activity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9LwzAcxYMobk7PnpSCFy913yRNmniT4S8YzMM8lzRNMGNtZ9KC_vdmrip40dMjvM_3wctD6BTDFcaET4N2ptHmSikFWNI9NMYgWSoJ0H00BqA8FZCzEToKYQUQPUkP0YgwwSRkdIyuF9qoJlHaVc46rTrXxldTJd2LSZ6Mr9t06Z0KwemkjpKYt841eosdowOr1sGcDDpBz3e3y9lDOl_cP85u5qliGe1SbRmUnDKe8bLCmBMuWVSW5bkpGVAqAFvDKKMkI5IxroBKG0FFLWHRmKDLXe7Gt6-9CV1Ru6DNeq0a0_ahwLEJwcBjnz9RQXIh4sE_UnlOOMR_2qZe_EJXbe-b2PmTAiEozSM13VHatyF4Y4uNd7Xy7wWGYjtWMYxVDGPFi_Mhty9rU33zX-tE4GwHrELX-h8_yzMuIvABRCWXRw</recordid><startdate>20150410</startdate><enddate>20150410</enddate><creator>Clarkson, M. O.</creator><creator>Kasemann, S. A.</creator><creator>Wood, R. A.</creator><creator>Lenton, T. M.</creator><creator>Daines, S. J.</creator><creator>Richoz, S.</creator><creator>Ohnemueller, F.</creator><creator>Meixner, A.</creator><creator>Poulton, S. W.</creator><creator>Tipper, E. T.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20150410</creationdate><title>Ocean acidification and the Permo-Triassic mass extinction</title><author>Clarkson, M. O. ; Kasemann, S. A. ; Wood, R. A. ; Lenton, T. M. ; Daines, S. J. ; Richoz, S. ; Ohnemueller, F. ; Meixner, A. ; Poulton, S. W. ; Tipper, E. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a543t-cf50b635646bd1162695d115477eb5033801fe53532429556a039f116a3f25e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidification</topic><topic>Animals</topic><topic>Aquatic Organisms</topic><topic>Atmosphere</topic><topic>Boron</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Carbon Cycle</topic><topic>Carbon Isotopes</topic><topic>Ecosystem</topic><topic>Extinction, Biological</topic><topic>Hydrogen-Ion Concentration</topic><topic>Isotopes</topic><topic>Marine</topic><topic>Mass extinctions</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Sea water</topic><topic>Seawater - chemistry</topic><topic>Time</topic><topic>Volcanic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarkson, M. O.</creatorcontrib><creatorcontrib>Kasemann, S. A.</creatorcontrib><creatorcontrib>Wood, R. A.</creatorcontrib><creatorcontrib>Lenton, T. M.</creatorcontrib><creatorcontrib>Daines, S. J.</creatorcontrib><creatorcontrib>Richoz, S.</creatorcontrib><creatorcontrib>Ohnemueller, F.</creatorcontrib><creatorcontrib>Meixner, A.</creatorcontrib><creatorcontrib>Poulton, S. W.</creatorcontrib><creatorcontrib>Tipper, E. T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarkson, M. O.</au><au>Kasemann, S. A.</au><au>Wood, R. A.</au><au>Lenton, T. M.</au><au>Daines, S. J.</au><au>Richoz, S.</au><au>Ohnemueller, F.</au><au>Meixner, A.</au><au>Poulton, S. W.</au><au>Tipper, E. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean acidification and the Permo-Triassic mass extinction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-04-10</date><risdate>2015</risdate><volume>348</volume><issue>6231</issue><spage>229</spage><epage>232</epage><pages>229-232</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25859043</pmid><doi>10.1126/science.aaa0193</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6231), p.229-232 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904210604 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Acidification Animals Aquatic Organisms Atmosphere Boron Buffers Carbon Carbon Cycle Carbon Isotopes Ecosystem Extinction, Biological Hydrogen-Ion Concentration Isotopes Marine Mass extinctions Oceans Oceans and Seas Sea water Seawater - chemistry Time Volcanic activity |
title | Ocean acidification and the Permo-Triassic mass extinction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20acidification%20and%20the%20Permo-Triassic%20mass%20extinction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Clarkson,%20M.%20O.&rft.date=2015-04-10&rft.volume=348&rft.issue=6231&rft.spage=229&rft.epage=232&rft.pages=229-232&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa0193&rft_dat=%3Cjstor_proqu%3E24746804%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672088337&rft_id=info:pmid/25859043&rft_jstor_id=24746804&rfr_iscdi=true |