Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies

This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2017-09, Vol.19 (3), p.49-49, Article 49
Hauptverfasser: Ayub, Suleman, Gentet, Luc J., Fiáth, Richárd, Schwaerzle, Michael, Borel, Mélodie, David, François, Barthó, Péter, Ulbert, István, Paul, Oliver, Ruther, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 3
container_start_page 49
container_title Biomedical microdevices
container_volume 19
creator Ayub, Suleman
Gentet, Luc J.
Fiáth, Richárd
Schwaerzle, Michael
Borel, Mélodie
David, François
Barthó, Péter
Ulbert, István
Paul, Oliver
Ruther, Patrick
description This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.
doi_str_mv 10.1007/s10544-017-0190-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904209219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904209219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8937101a1160d2ee164189942ce530e755246cb56a4afb26ef7eb8cf2c923ccb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwIuXaiZtkvYo6ycsiKDnkKTTtctuuyYtsv_elKqI4GHIwDzzZngIOQV2CYypqwBMZFnCQMUqWJLukSkIxZNc5bAf-zRXCQclJ-QohBWLkJTykEx4LiRTjE_J88PO-rqkddN549Cj9WZNt761SD_q7m0Y4NKbDktqjUe6uL2h7q3eBlq1nrbbrl1ig13taOj6ssZwTA4qsw548vXOyOvd7cv8IVk83T_OrxeJy0B0SV6kChgYAMlKjggyg7woMu5QpAyVEDyTzgppMlNZLrFSaHNXcVfw1DmbzsjFmBuPfe8xdHpTB4frtWmw7YOOQjLOCg5FRM__oKu29028bqDSnCkBaaRgpJxvQ_BY6a2vN8bvNDA9-Najbx1968G3HnbOvpJ7u8HyZ-NbcAT4CIQ4apbof339b-on9myJsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903807513</pqid></control><display><type>article</type><title>Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ayub, Suleman ; Gentet, Luc J. ; Fiáth, Richárd ; Schwaerzle, Michael ; Borel, Mélodie ; David, François ; Barthó, Péter ; Ulbert, István ; Paul, Oliver ; Ruther, Patrick</creator><creatorcontrib>Ayub, Suleman ; Gentet, Luc J. ; Fiáth, Richárd ; Schwaerzle, Michael ; Borel, Mélodie ; David, François ; Barthó, Péter ; Ulbert, István ; Paul, Oliver ; Ruther, Patrick</creatorcontrib><description>This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-017-0190-3</identifier><identifier>PMID: 28560702</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biological and Medical Physics ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biophysics ; Brain ; Brain - metabolism ; Brain - physiology ; Cables ; Chips ; Electrical properties ; Electrophysiological Phenomena ; Encapsulation ; Engineering ; Engineering Fluid Dynamics ; Fabrication ; Genetics ; Implantation ; In vivo methods and tests ; Information processing ; Light effects ; Light emitting diodes ; Luminous intensity ; Mice ; Micromachining ; Mouse devices ; Nanotechnology ; Neurology ; Neuromodulation ; Optical Fibers ; Optical Phenomena ; Optical properties ; Optics ; Optoelectronics ; Optogenetics - instrumentation ; Probes ; Protective coatings ; Semiconductors ; Silicon ; Silicon substrates ; Stiffness ; Stimulation ; Surgical implants ; Thalamus ; Transgenic mice</subject><ispartof>Biomedical microdevices, 2017-09, Vol.19 (3), p.49-49, Article 49</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Biomedical Microdevices is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8937101a1160d2ee164189942ce530e755246cb56a4afb26ef7eb8cf2c923ccb3</citedby><cites>FETCH-LOGICAL-c415t-8937101a1160d2ee164189942ce530e755246cb56a4afb26ef7eb8cf2c923ccb3</cites><orcidid>0000-0001-6887-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-017-0190-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-017-0190-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28560702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayub, Suleman</creatorcontrib><creatorcontrib>Gentet, Luc J.</creatorcontrib><creatorcontrib>Fiáth, Richárd</creatorcontrib><creatorcontrib>Schwaerzle, Michael</creatorcontrib><creatorcontrib>Borel, Mélodie</creatorcontrib><creatorcontrib>David, François</creatorcontrib><creatorcontrib>Barthó, Péter</creatorcontrib><creatorcontrib>Ulbert, István</creatorcontrib><creatorcontrib>Paul, Oliver</creatorcontrib><creatorcontrib>Ruther, Patrick</creatorcontrib><title>Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.</description><subject>Animals</subject><subject>Biological and Medical Physics</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Cables</subject><subject>Chips</subject><subject>Electrical properties</subject><subject>Electrophysiological Phenomena</subject><subject>Encapsulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fabrication</subject><subject>Genetics</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Information processing</subject><subject>Light effects</subject><subject>Light emitting diodes</subject><subject>Luminous intensity</subject><subject>Mice</subject><subject>Micromachining</subject><subject>Mouse devices</subject><subject>Nanotechnology</subject><subject>Neurology</subject><subject>Neuromodulation</subject><subject>Optical Fibers</subject><subject>Optical Phenomena</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Optogenetics - instrumentation</subject><subject>Probes</subject><subject>Protective coatings</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Stiffness</subject><subject>Stimulation</subject><subject>Surgical implants</subject><subject>Thalamus</subject><subject>Transgenic mice</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwIuXaiZtkvYo6ycsiKDnkKTTtctuuyYtsv_elKqI4GHIwDzzZngIOQV2CYypqwBMZFnCQMUqWJLukSkIxZNc5bAf-zRXCQclJ-QohBWLkJTykEx4LiRTjE_J88PO-rqkddN549Cj9WZNt761SD_q7m0Y4NKbDktqjUe6uL2h7q3eBlq1nrbbrl1ig13taOj6ssZwTA4qsw548vXOyOvd7cv8IVk83T_OrxeJy0B0SV6kChgYAMlKjggyg7woMu5QpAyVEDyTzgppMlNZLrFSaHNXcVfw1DmbzsjFmBuPfe8xdHpTB4frtWmw7YOOQjLOCg5FRM__oKu29028bqDSnCkBaaRgpJxvQ_BY6a2vN8bvNDA9-Najbx1968G3HnbOvpJ7u8HyZ-NbcAT4CIQ4apbof339b-on9myJsw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ayub, Suleman</creator><creator>Gentet, Luc J.</creator><creator>Fiáth, Richárd</creator><creator>Schwaerzle, Michael</creator><creator>Borel, Mélodie</creator><creator>David, François</creator><creator>Barthó, Péter</creator><creator>Ulbert, István</creator><creator>Paul, Oliver</creator><creator>Ruther, Patrick</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6887-5071</orcidid></search><sort><creationdate>20170901</creationdate><title>Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies</title><author>Ayub, Suleman ; Gentet, Luc J. ; Fiáth, Richárd ; Schwaerzle, Michael ; Borel, Mélodie ; David, François ; Barthó, Péter ; Ulbert, István ; Paul, Oliver ; Ruther, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8937101a1160d2ee164189942ce530e755246cb56a4afb26ef7eb8cf2c923ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological and Medical Physics</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Cables</topic><topic>Chips</topic><topic>Electrical properties</topic><topic>Electrophysiological Phenomena</topic><topic>Encapsulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fabrication</topic><topic>Genetics</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Information processing</topic><topic>Light effects</topic><topic>Light emitting diodes</topic><topic>Luminous intensity</topic><topic>Mice</topic><topic>Micromachining</topic><topic>Mouse devices</topic><topic>Nanotechnology</topic><topic>Neurology</topic><topic>Neuromodulation</topic><topic>Optical Fibers</topic><topic>Optical Phenomena</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Optogenetics - instrumentation</topic><topic>Probes</topic><topic>Protective coatings</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Stiffness</topic><topic>Stimulation</topic><topic>Surgical implants</topic><topic>Thalamus</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayub, Suleman</creatorcontrib><creatorcontrib>Gentet, Luc J.</creatorcontrib><creatorcontrib>Fiáth, Richárd</creatorcontrib><creatorcontrib>Schwaerzle, Michael</creatorcontrib><creatorcontrib>Borel, Mélodie</creatorcontrib><creatorcontrib>David, François</creatorcontrib><creatorcontrib>Barthó, Péter</creatorcontrib><creatorcontrib>Ulbert, István</creatorcontrib><creatorcontrib>Paul, Oliver</creatorcontrib><creatorcontrib>Ruther, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayub, Suleman</au><au>Gentet, Luc J.</au><au>Fiáth, Richárd</au><au>Schwaerzle, Michael</au><au>Borel, Mélodie</au><au>David, François</au><au>Barthó, Péter</au><au>Ulbert, István</au><au>Paul, Oliver</au><au>Ruther, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><spage>49</spage><epage>49</epage><pages>49-49</pages><artnum>49</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28560702</pmid><doi>10.1007/s10544-017-0190-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6887-5071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2017-09, Vol.19 (3), p.49-49, Article 49
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_1904209219
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biological and Medical Physics
Biomedical engineering
Biomedical Engineering and Bioengineering
Biophysics
Brain
Brain - metabolism
Brain - physiology
Cables
Chips
Electrical properties
Electrophysiological Phenomena
Encapsulation
Engineering
Engineering Fluid Dynamics
Fabrication
Genetics
Implantation
In vivo methods and tests
Information processing
Light effects
Light emitting diodes
Luminous intensity
Mice
Micromachining
Mouse devices
Nanotechnology
Neurology
Neuromodulation
Optical Fibers
Optical Phenomena
Optical properties
Optics
Optoelectronics
Optogenetics - instrumentation
Probes
Protective coatings
Semiconductors
Silicon
Silicon substrates
Stiffness
Stimulation
Surgical implants
Thalamus
Transgenic mice
title Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20intracerebral%20probe%20with%20integrated%20bare%20LED%20chips%20for%20optogenetic%20studies&rft.jtitle=Biomedical%20microdevices&rft.au=Ayub,%20Suleman&rft.date=2017-09-01&rft.volume=19&rft.issue=3&rft.spage=49&rft.epage=49&rft.pages=49-49&rft.artnum=49&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-017-0190-3&rft_dat=%3Cproquest_cross%3E1904209219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903807513&rft_id=info:pmid/28560702&rfr_iscdi=true