Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface

Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-06, Vol.9 (24), p.20545-20553
Hauptverfasser: Xu, Shenzhen, Luo, Guangfu, Jacobs, Ryan, Fang, Shuyu, Mahanthappa, Mahesh K, Hamers, Robert J, Morgan, Dane
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20553
container_issue 24
container_start_page 20545
container_title ACS applied materials & interfaces
container_volume 9
creator Xu, Shenzhen
Luo, Guangfu
Jacobs, Ryan
Fang, Shuyu
Mahanthappa, Mahesh K
Hamers, Robert J
Morgan, Dane
description Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li­(Ni x ,Mn y ,Co1‑x‑y )­O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li+ ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl −OH or fluorine −F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The −OH and −F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of −OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.
doi_str_mv 10.1021/acsami.7b03435
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904206565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904206565</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-45efcef625cf05b48ae275f2000196fad526c20e9c22793279007660852585273</originalsourceid><addsrcrecordid>eNo9UE1PwzAMrRBIjMGVc44DrcNNk3Q9TmXApI1JfJyrNHNYpywZTYu0f0_GJiRbfrafn6wXRbcJjBKgyYNUXm7rUVZBylJ-FvWSnLF4TDk9_8eMXUZX3m8AREqB96KfSUVmtm5rRxZuhaa2X8RpMjWo2saZfYthHprOIJm2671Bi6SQTeWsDLtHVG67c_4gYMkbSvUHQszrwWs9XNhh4e6WNJy066BP3rtGS4XX0YWWxuPNqfajz6fpR_ESz5fPs2IyjyUF1saMo1aoBeVKA6_YWCLNuKYAkORCyxWnQlHAXFGa5WlIgEwIGHPKQ2ZpPxocdXeN--7Qt-W29gqNkRZd58skB0ZBcMED9f5IDT6WG9c1NjxWJlAezC2P5pYnc9NfMM1svA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904206565</pqid></control><display><type>article</type><title>Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface</title><source>American Chemical Society Journals</source><creator>Xu, Shenzhen ; Luo, Guangfu ; Jacobs, Ryan ; Fang, Shuyu ; Mahanthappa, Mahesh K ; Hamers, Robert J ; Morgan, Dane</creator><creatorcontrib>Xu, Shenzhen ; Luo, Guangfu ; Jacobs, Ryan ; Fang, Shuyu ; Mahanthappa, Mahesh K ; Hamers, Robert J ; Morgan, Dane</creatorcontrib><description>Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li­(Ni x ,Mn y ,Co1‑x‑y )­O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li+ ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl −OH or fluorine −F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The −OH and −F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of −OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b03435</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-06, Vol.9 (24), p.20545-20553</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9871-804X ; 0000-0003-3821-9625 ; 0000-0001-7268-9917 ; 0000-0002-4911-0046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b03435$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b03435$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xu, Shenzhen</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Jacobs, Ryan</creatorcontrib><creatorcontrib>Fang, Shuyu</creatorcontrib><creatorcontrib>Mahanthappa, Mahesh K</creatorcontrib><creatorcontrib>Hamers, Robert J</creatorcontrib><creatorcontrib>Morgan, Dane</creatorcontrib><title>Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li­(Ni x ,Mn y ,Co1‑x‑y )­O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li+ ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl −OH or fluorine −F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The −OH and −F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of −OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwzAMrRBIjMGVc44DrcNNk3Q9TmXApI1JfJyrNHNYpywZTYu0f0_GJiRbfrafn6wXRbcJjBKgyYNUXm7rUVZBylJ-FvWSnLF4TDk9_8eMXUZX3m8AREqB96KfSUVmtm5rRxZuhaa2X8RpMjWo2saZfYthHprOIJm2671Bi6SQTeWsDLtHVG67c_4gYMkbSvUHQszrwWs9XNhh4e6WNJy066BP3rtGS4XX0YWWxuPNqfajz6fpR_ESz5fPs2IyjyUF1saMo1aoBeVKA6_YWCLNuKYAkORCyxWnQlHAXFGa5WlIgEwIGHPKQ2ZpPxocdXeN--7Qt-W29gqNkRZd58skB0ZBcMED9f5IDT6WG9c1NjxWJlAezC2P5pYnc9NfMM1svA</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Xu, Shenzhen</creator><creator>Luo, Guangfu</creator><creator>Jacobs, Ryan</creator><creator>Fang, Shuyu</creator><creator>Mahanthappa, Mahesh K</creator><creator>Hamers, Robert J</creator><creator>Morgan, Dane</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9871-804X</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0001-7268-9917</orcidid><orcidid>https://orcid.org/0000-0002-4911-0046</orcidid></search><sort><creationdate>20170621</creationdate><title>Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface</title><author>Xu, Shenzhen ; Luo, Guangfu ; Jacobs, Ryan ; Fang, Shuyu ; Mahanthappa, Mahesh K ; Hamers, Robert J ; Morgan, Dane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-45efcef625cf05b48ae275f2000196fad526c20e9c22793279007660852585273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shenzhen</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Jacobs, Ryan</creatorcontrib><creatorcontrib>Fang, Shuyu</creatorcontrib><creatorcontrib>Mahanthappa, Mahesh K</creatorcontrib><creatorcontrib>Hamers, Robert J</creatorcontrib><creatorcontrib>Morgan, Dane</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shenzhen</au><au>Luo, Guangfu</au><au>Jacobs, Ryan</au><au>Fang, Shuyu</au><au>Mahanthappa, Mahesh K</au><au>Hamers, Robert J</au><au>Morgan, Dane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>9</volume><issue>24</issue><spage>20545</spage><epage>20553</epage><pages>20545-20553</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li­(Ni x ,Mn y ,Co1‑x‑y )­O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li+ ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl −OH or fluorine −F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The −OH and −F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of −OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.7b03435</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9871-804X</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0001-7268-9917</orcidid><orcidid>https://orcid.org/0000-0002-4911-0046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-06, Vol.9 (24), p.20545-20553
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1904206565
source American Chemical Society Journals
title Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20Initio%20Modeling%20of%20Electrolyte%20Molecule%20Ethylene%20Carbonate%20Decomposition%20Reaction%20on%20Li(Ni,Mn,Co)O2%20Cathode%20Surface&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Shenzhen&rft.date=2017-06-21&rft.volume=9&rft.issue=24&rft.spage=20545&rft.epage=20553&rft.pages=20545-20553&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b03435&rft_dat=%3Cproquest_acs_j%3E1904206565%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904206565&rft_id=info:pmid/&rfr_iscdi=true