Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors

We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly­(vinyl alcohol) hydrogel a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-06, Vol.9 (23), p.20142-20149
Hauptverfasser: Li, Wanwan, Lu, Han, Zhang, Ning, Ma, Mingming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20149
container_issue 23
container_start_page 20142
container_title ACS applied materials & interfaces
container_volume 9
creator Li, Wanwan
Lu, Han
Zhang, Ning
Ma, Mingming
description We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly­(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.
doi_str_mv 10.1021/acsami.7b05963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904206564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904206564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhq0K1N1ue-WIfERIWcaJbZIjWrGAtFKRSs-R44x3jZJ4sRMgHFDfoW_YJ8HVLtw4zUjz_b80HyFHDOYMUnamdFCtnZ9XIAqZfSFTVnCe5KlIDz52zifkWwj3ADJLQXwlkzQX4pynMCWvl91Gddp2a9pvkN56t0XfWwzUGbpwXT3o3j7Gg2vGFj29Hmvv1tgEWo106RFf8N-fv3cb9UQXo25izrhI2fUmuUUf9za2I102-GyrBumvIfZrtVXa9s6H7-TQqCbgj_2ckd_Ly7vFdbL6eXWzuFglKsugT7LUpFxxqAHBKBBCCcOgkjKTdZ5DUcvKAK9NziqNFRa54EYJiQokkyhVNiMnu96tdw8Dhr5sbdDYNKpDN4SSFRB1SCF5ROc7VHsXgkdTbr1tlR9LBuV_5-XOebl3HgPH--6harH-wN8lR-B0B8Rgee8G38VXP2t7Ay78j0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904206564</pqid></control><display><type>article</type><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><source>ACS Publications</source><creator>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</creator><creatorcontrib>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</creatorcontrib><description>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly­(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b05963</identifier><identifier>PMID: 28557420</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-06, Vol.9 (23), p.20142-20149</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</citedby><cites>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</cites><orcidid>0000-0002-7967-8927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b05963$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b05963$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28557420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wanwan</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly­(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFO3DAQhq0K1N1ue-WIfERIWcaJbZIjWrGAtFKRSs-R44x3jZJ4sRMgHFDfoW_YJ8HVLtw4zUjz_b80HyFHDOYMUnamdFCtnZ9XIAqZfSFTVnCe5KlIDz52zifkWwj3ADJLQXwlkzQX4pynMCWvl91Gddp2a9pvkN56t0XfWwzUGbpwXT3o3j7Gg2vGFj29Hmvv1tgEWo106RFf8N-fv3cb9UQXo25izrhI2fUmuUUf9za2I102-GyrBumvIfZrtVXa9s6H7-TQqCbgj_2ckd_Ly7vFdbL6eXWzuFglKsugT7LUpFxxqAHBKBBCCcOgkjKTdZ5DUcvKAK9NziqNFRa54EYJiQokkyhVNiMnu96tdw8Dhr5sbdDYNKpDN4SSFRB1SCF5ROc7VHsXgkdTbr1tlR9LBuV_5-XOebl3HgPH--6harH-wN8lR-B0B8Rgee8G38VXP2t7Ay78j0Q</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Li, Wanwan</creator><creator>Lu, Han</creator><creator>Zhang, Ning</creator><creator>Ma, Mingming</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7967-8927</orcidid></search><sort><creationdate>20170614</creationdate><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><author>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wanwan</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wanwan</au><au>Lu, Han</au><au>Zhang, Ning</au><au>Ma, Mingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>9</volume><issue>23</issue><spage>20142</spage><epage>20149</epage><pages>20142-20149</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly­(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28557420</pmid><doi>10.1021/acsami.7b05963</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7967-8927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-06, Vol.9 (23), p.20142-20149
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1904206564
source ACS Publications
title Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Properties%20of%20Conductive%20Polymer%20Hydrogels%20by%20Freeze%E2%80%93Thaw%20Cycles%20for%20High-Performance%20Flexible%20Supercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Wanwan&rft.date=2017-06-14&rft.volume=9&rft.issue=23&rft.spage=20142&rft.epage=20149&rft.pages=20142-20149&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b05963&rft_dat=%3Cproquest_cross%3E1904206564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904206564&rft_id=info:pmid/28557420&rfr_iscdi=true