Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors
We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly(vinyl alcohol) hydrogel a...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-06, Vol.9 (23), p.20142-20149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20149 |
---|---|
container_issue | 23 |
container_start_page | 20142 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Li, Wanwan Lu, Han Zhang, Ning Ma, Mingming |
description | We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels. |
doi_str_mv | 10.1021/acsami.7b05963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904206564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904206564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhq0K1N1ue-WIfERIWcaJbZIjWrGAtFKRSs-R44x3jZJ4sRMgHFDfoW_YJ8HVLtw4zUjz_b80HyFHDOYMUnamdFCtnZ9XIAqZfSFTVnCe5KlIDz52zifkWwj3ADJLQXwlkzQX4pynMCWvl91Gddp2a9pvkN56t0XfWwzUGbpwXT3o3j7Gg2vGFj29Hmvv1tgEWo106RFf8N-fv3cb9UQXo25izrhI2fUmuUUf9za2I102-GyrBumvIfZrtVXa9s6H7-TQqCbgj_2ckd_Ly7vFdbL6eXWzuFglKsugT7LUpFxxqAHBKBBCCcOgkjKTdZ5DUcvKAK9NziqNFRa54EYJiQokkyhVNiMnu96tdw8Dhr5sbdDYNKpDN4SSFRB1SCF5ROc7VHsXgkdTbr1tlR9LBuV_5-XOebl3HgPH--6harH-wN8lR-B0B8Rgee8G38VXP2t7Ay78j0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904206564</pqid></control><display><type>article</type><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><source>ACS Publications</source><creator>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</creator><creatorcontrib>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</creatorcontrib><description>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b05963</identifier><identifier>PMID: 28557420</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2017-06, Vol.9 (23), p.20142-20149</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</citedby><cites>FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</cites><orcidid>0000-0002-7967-8927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b05963$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b05963$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28557420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wanwan</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFO3DAQhq0K1N1ue-WIfERIWcaJbZIjWrGAtFKRSs-R44x3jZJ4sRMgHFDfoW_YJ8HVLtw4zUjz_b80HyFHDOYMUnamdFCtnZ9XIAqZfSFTVnCe5KlIDz52zifkWwj3ADJLQXwlkzQX4pynMCWvl91Gddp2a9pvkN56t0XfWwzUGbpwXT3o3j7Gg2vGFj29Hmvv1tgEWo106RFf8N-fv3cb9UQXo25izrhI2fUmuUUf9za2I102-GyrBumvIfZrtVXa9s6H7-TQqCbgj_2ckd_Ly7vFdbL6eXWzuFglKsugT7LUpFxxqAHBKBBCCcOgkjKTdZ5DUcvKAK9NziqNFRa54EYJiQokkyhVNiMnu96tdw8Dhr5sbdDYNKpDN4SSFRB1SCF5ROc7VHsXgkdTbr1tlR9LBuV_5-XOebl3HgPH--6harH-wN8lR-B0B8Rgee8G38VXP2t7Ay78j0Q</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Li, Wanwan</creator><creator>Lu, Han</creator><creator>Zhang, Ning</creator><creator>Ma, Mingming</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7967-8927</orcidid></search><sort><creationdate>20170614</creationdate><title>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</title><author>Li, Wanwan ; Lu, Han ; Zhang, Ning ; Ma, Mingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-32f24a40d0e0fa055a5f10b6636d8809d6bf04df81bcebe9854fa56ea0616e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wanwan</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wanwan</au><au>Lu, Han</au><au>Zhang, Ning</au><au>Ma, Mingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>9</volume><issue>23</issue><spage>20142</spage><epage>20149</epage><pages>20142-20149</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report that a postsynthesis physical process (freeze–thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline–poly(vinyl alcohol) hydrogel after five freeze–thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g–1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm–2 and 210 F·g–1) and high energy density (18.7 W·h·kg–1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge–discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze–thaw cycles for enhancing the performance of functional hydrogels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28557420</pmid><doi>10.1021/acsami.7b05963</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7967-8927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-06, Vol.9 (23), p.20142-20149 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904206564 |
source | ACS Publications |
title | Enhancing the Properties of Conductive Polymer Hydrogels by Freeze–Thaw Cycles for High-Performance Flexible Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Properties%20of%20Conductive%20Polymer%20Hydrogels%20by%20Freeze%E2%80%93Thaw%20Cycles%20for%20High-Performance%20Flexible%20Supercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Wanwan&rft.date=2017-06-14&rft.volume=9&rft.issue=23&rft.spage=20142&rft.epage=20149&rft.pages=20142-20149&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b05963&rft_dat=%3Cproquest_cross%3E1904206564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904206564&rft_id=info:pmid/28557420&rfr_iscdi=true |