Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components
We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filamen...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-03, Vol.347 (6229), p.1446-1452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1452 |
---|---|
container_issue | 6229 |
container_start_page | 1446 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 347 |
creator | Gerling, Thomas Wagenbauer, Klaus F. Neuner, Andrea M. Dietz, Hendrik |
description | We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. |
doi_str_mv | 10.1126/science.aaa5372 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904206498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24746616</jstor_id><sourcerecordid>24746616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</originalsourceid><addsrcrecordid>eNqN0U1vEzEQBmALgWhoOXMCWeLCgW3H3-tj1fBRqaKX3hfvZAIb7dqLnSDl3-MoASQu9GRZ83g045exVwIuhZD2quBAEekyhGCUk0_YQoA3jZegnrIFgLJNC86csRelbABqzavn7EyaVmjj3IJ9Xe5jmAbkyy_XfEU_B6TCQ1zxUApN_TjU6zrliVa83_PyPczUYJrmkSaK25D373lMselDIT6HIQ_xG1dLfiApVlEu2LN1GAu9PJ3n7OHjh4ebz83d_afbm-u7Bo2w20aScJ4QrQiIYDw5AGsdGuukNqhtTxK0qfOb1qsWPXqLK09aktSyVefs3bHtnNOPHZVtNw0FaRxDpLQrnfCgJVjtH0Fb4YXyIM3_aR1RaeWFr_TtP3STdjnWlQ_K-jq5hqqujgpzKiXTupvzMNVv7AR0h0S7U6LdKdH64s2p766vKfzxvyOs4PURbMo25b917bS1wqpfpK-lfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666995940</pqid></control><display><type>article</type><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</creator><creatorcontrib>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</creatorcontrib><description>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa5372</identifier><identifier>PMID: 25814577</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Assemblies ; Base Pairing ; Cations ; Deoxyribonucleic acid ; Devices ; DNA ; DNA - chemistry ; Electron microscopes ; Electron transfer ; Electrophoresis ; Filaments ; Fluorescence Resonance Energy Transfer ; Imaging ; Microscopy ; Molecular biology ; Molecular Imaging ; Nanostructure ; Nanostructured materials ; Nanostructures - chemistry ; Nanotechnology - methods ; Nucleic Acid Conformation ; RNA - chemistry ; Stacking ; Static Electricity</subject><ispartof>Science (American Association for the Advancement of Science), 2015-03, Vol.347 (6229), p.1446-1452</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</citedby><cites>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24746616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24746616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25814577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerling, Thomas</creatorcontrib><creatorcontrib>Wagenbauer, Klaus F.</creatorcontrib><creatorcontrib>Neuner, Andrea M.</creatorcontrib><creatorcontrib>Dietz, Hendrik</creatorcontrib><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</description><subject>Assemblies</subject><subject>Base Pairing</subject><subject>Cations</subject><subject>Deoxyribonucleic acid</subject><subject>Devices</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electron microscopes</subject><subject>Electron transfer</subject><subject>Electrophoresis</subject><subject>Filaments</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Imaging</subject><subject>Microscopy</subject><subject>Molecular biology</subject><subject>Molecular Imaging</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - chemistry</subject><subject>Stacking</subject><subject>Static Electricity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1vEzEQBmALgWhoOXMCWeLCgW3H3-tj1fBRqaKX3hfvZAIb7dqLnSDl3-MoASQu9GRZ83g045exVwIuhZD2quBAEekyhGCUk0_YQoA3jZegnrIFgLJNC86csRelbABqzavn7EyaVmjj3IJ9Xe5jmAbkyy_XfEU_B6TCQ1zxUApN_TjU6zrliVa83_PyPczUYJrmkSaK25D373lMselDIT6HIQ_xG1dLfiApVlEu2LN1GAu9PJ3n7OHjh4ebz83d_afbm-u7Bo2w20aScJ4QrQiIYDw5AGsdGuukNqhtTxK0qfOb1qsWPXqLK09aktSyVefs3bHtnNOPHZVtNw0FaRxDpLQrnfCgJVjtH0Fb4YXyIM3_aR1RaeWFr_TtP3STdjnWlQ_K-jq5hqqujgpzKiXTupvzMNVv7AR0h0S7U6LdKdH64s2p766vKfzxvyOs4PURbMo25b917bS1wqpfpK-lfw</recordid><startdate>20150327</startdate><enddate>20150327</enddate><creator>Gerling, Thomas</creator><creator>Wagenbauer, Klaus F.</creator><creator>Neuner, Andrea M.</creator><creator>Dietz, Hendrik</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150327</creationdate><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><author>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assemblies</topic><topic>Base Pairing</topic><topic>Cations</topic><topic>Deoxyribonucleic acid</topic><topic>Devices</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electron microscopes</topic><topic>Electron transfer</topic><topic>Electrophoresis</topic><topic>Filaments</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Imaging</topic><topic>Microscopy</topic><topic>Molecular biology</topic><topic>Molecular Imaging</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - chemistry</topic><topic>Stacking</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerling, Thomas</creatorcontrib><creatorcontrib>Wagenbauer, Klaus F.</creatorcontrib><creatorcontrib>Neuner, Andrea M.</creatorcontrib><creatorcontrib>Dietz, Hendrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerling, Thomas</au><au>Wagenbauer, Klaus F.</au><au>Neuner, Andrea M.</au><au>Dietz, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-03-27</date><risdate>2015</risdate><volume>347</volume><issue>6229</issue><spage>1446</spage><epage>1452</epage><pages>1446-1452</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25814577</pmid><doi>10.1126/science.aaa5372</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-03, Vol.347 (6229), p.1446-1452 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904206498 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Assemblies Base Pairing Cations Deoxyribonucleic acid Devices DNA DNA - chemistry Electron microscopes Electron transfer Electrophoresis Filaments Fluorescence Resonance Energy Transfer Imaging Microscopy Molecular biology Molecular Imaging Nanostructure Nanostructured materials Nanostructures - chemistry Nanotechnology - methods Nucleic Acid Conformation RNA - chemistry Stacking Static Electricity |
title | Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20DNA%20devices%20and%20assemblies%20formed%20by%20shape-complementary,%20non-base%20pairing%203D%20components&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Gerling,%20Thomas&rft.date=2015-03-27&rft.volume=347&rft.issue=6229&rft.spage=1446&rft.epage=1452&rft.pages=1446-1452&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa5372&rft_dat=%3Cjstor_proqu%3E24746616%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666995940&rft_id=info:pmid/25814577&rft_jstor_id=24746616&rfr_iscdi=true |