Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components

We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filamen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-03, Vol.347 (6229), p.1446-1452
Hauptverfasser: Gerling, Thomas, Wagenbauer, Klaus F., Neuner, Andrea M., Dietz, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1452
container_issue 6229
container_start_page 1446
container_title Science (American Association for the Advancement of Science)
container_volume 347
creator Gerling, Thomas
Wagenbauer, Klaus F.
Neuner, Andrea M.
Dietz, Hendrik
description We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.
doi_str_mv 10.1126/science.aaa5372
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904206498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24746616</jstor_id><sourcerecordid>24746616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</originalsourceid><addsrcrecordid>eNqN0U1vEzEQBmALgWhoOXMCWeLCgW3H3-tj1fBRqaKX3hfvZAIb7dqLnSDl3-MoASQu9GRZ83g045exVwIuhZD2quBAEekyhGCUk0_YQoA3jZegnrIFgLJNC86csRelbABqzavn7EyaVmjj3IJ9Xe5jmAbkyy_XfEU_B6TCQ1zxUApN_TjU6zrliVa83_PyPczUYJrmkSaK25D373lMselDIT6HIQ_xG1dLfiApVlEu2LN1GAu9PJ3n7OHjh4ebz83d_afbm-u7Bo2w20aScJ4QrQiIYDw5AGsdGuukNqhtTxK0qfOb1qsWPXqLK09aktSyVefs3bHtnNOPHZVtNw0FaRxDpLQrnfCgJVjtH0Fb4YXyIM3_aR1RaeWFr_TtP3STdjnWlQ_K-jq5hqqujgpzKiXTupvzMNVv7AR0h0S7U6LdKdH64s2p766vKfzxvyOs4PURbMo25b917bS1wqpfpK-lfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666995940</pqid></control><display><type>article</type><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</creator><creatorcontrib>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</creatorcontrib><description>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa5372</identifier><identifier>PMID: 25814577</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Assemblies ; Base Pairing ; Cations ; Deoxyribonucleic acid ; Devices ; DNA ; DNA - chemistry ; Electron microscopes ; Electron transfer ; Electrophoresis ; Filaments ; Fluorescence Resonance Energy Transfer ; Imaging ; Microscopy ; Molecular biology ; Molecular Imaging ; Nanostructure ; Nanostructured materials ; Nanostructures - chemistry ; Nanotechnology - methods ; Nucleic Acid Conformation ; RNA - chemistry ; Stacking ; Static Electricity</subject><ispartof>Science (American Association for the Advancement of Science), 2015-03, Vol.347 (6229), p.1446-1452</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</citedby><cites>FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24746616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24746616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25814577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerling, Thomas</creatorcontrib><creatorcontrib>Wagenbauer, Klaus F.</creatorcontrib><creatorcontrib>Neuner, Andrea M.</creatorcontrib><creatorcontrib>Dietz, Hendrik</creatorcontrib><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</description><subject>Assemblies</subject><subject>Base Pairing</subject><subject>Cations</subject><subject>Deoxyribonucleic acid</subject><subject>Devices</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electron microscopes</subject><subject>Electron transfer</subject><subject>Electrophoresis</subject><subject>Filaments</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Imaging</subject><subject>Microscopy</subject><subject>Molecular biology</subject><subject>Molecular Imaging</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - chemistry</subject><subject>Stacking</subject><subject>Static Electricity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1vEzEQBmALgWhoOXMCWeLCgW3H3-tj1fBRqaKX3hfvZAIb7dqLnSDl3-MoASQu9GRZ83g045exVwIuhZD2quBAEekyhGCUk0_YQoA3jZegnrIFgLJNC86csRelbABqzavn7EyaVmjj3IJ9Xe5jmAbkyy_XfEU_B6TCQ1zxUApN_TjU6zrliVa83_PyPczUYJrmkSaK25D373lMselDIT6HIQ_xG1dLfiApVlEu2LN1GAu9PJ3n7OHjh4ebz83d_afbm-u7Bo2w20aScJ4QrQiIYDw5AGsdGuukNqhtTxK0qfOb1qsWPXqLK09aktSyVefs3bHtnNOPHZVtNw0FaRxDpLQrnfCgJVjtH0Fb4YXyIM3_aR1RaeWFr_TtP3STdjnWlQ_K-jq5hqqujgpzKiXTupvzMNVv7AR0h0S7U6LdKdH64s2p766vKfzxvyOs4PURbMo25b917bS1wqpfpK-lfw</recordid><startdate>20150327</startdate><enddate>20150327</enddate><creator>Gerling, Thomas</creator><creator>Wagenbauer, Klaus F.</creator><creator>Neuner, Andrea M.</creator><creator>Dietz, Hendrik</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150327</creationdate><title>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</title><author>Gerling, Thomas ; Wagenbauer, Klaus F. ; Neuner, Andrea M. ; Dietz, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-2e179ecc61acc059e700667c567245c46be204595958938c9c96cd9e42e24283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assemblies</topic><topic>Base Pairing</topic><topic>Cations</topic><topic>Deoxyribonucleic acid</topic><topic>Devices</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electron microscopes</topic><topic>Electron transfer</topic><topic>Electrophoresis</topic><topic>Filaments</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Imaging</topic><topic>Microscopy</topic><topic>Molecular biology</topic><topic>Molecular Imaging</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - chemistry</topic><topic>Stacking</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerling, Thomas</creatorcontrib><creatorcontrib>Wagenbauer, Klaus F.</creatorcontrib><creatorcontrib>Neuner, Andrea M.</creatorcontrib><creatorcontrib>Dietz, Hendrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerling, Thomas</au><au>Wagenbauer, Klaus F.</au><au>Neuner, Andrea M.</au><au>Dietz, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-03-27</date><risdate>2015</risdate><volume>347</volume><issue>6229</issue><spage>1446</spage><epage>1452</epage><pages>1446-1452</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25814577</pmid><doi>10.1126/science.aaa5372</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-03, Vol.347 (6229), p.1446-1452
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904206498
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Assemblies
Base Pairing
Cations
Deoxyribonucleic acid
Devices
DNA
DNA - chemistry
Electron microscopes
Electron transfer
Electrophoresis
Filaments
Fluorescence Resonance Energy Transfer
Imaging
Microscopy
Molecular biology
Molecular Imaging
Nanostructure
Nanostructured materials
Nanostructures - chemistry
Nanotechnology - methods
Nucleic Acid Conformation
RNA - chemistry
Stacking
Static Electricity
title Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20DNA%20devices%20and%20assemblies%20formed%20by%20shape-complementary,%20non-base%20pairing%203D%20components&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Gerling,%20Thomas&rft.date=2015-03-27&rft.volume=347&rft.issue=6229&rft.spage=1446&rft.epage=1452&rft.pages=1446-1452&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa5372&rft_dat=%3Cjstor_proqu%3E24746616%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666995940&rft_id=info:pmid/25814577&rft_jstor_id=24746616&rfr_iscdi=true