The Threshold for Integer Homology in Random d-Complexes

Let Y ∼ Y d ( n , p ) denote the Bernoulli random d -dimensional simplicial complex. We answer a question of Linial and Meshulam from 2003, showing that the threshold for vanishing of homology H d - 1 ( Y ; Z ) is less than 40 d ( d + 1 ) log n / n . This bound is tight, up to a constant factor whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2017-06, Vol.57 (4), p.810-823
Hauptverfasser: Hoffman, Christopher, Kahle, Matthew, Paquette, Elliot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y ∼ Y d ( n , p ) denote the Bernoulli random d -dimensional simplicial complex. We answer a question of Linial and Meshulam from 2003, showing that the threshold for vanishing of homology H d - 1 ( Y ; Z ) is less than 40 d ( d + 1 ) log n / n . This bound is tight, up to a constant factor which depends on d .
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-017-9863-1