Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy

Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-04, Vol.100 (4), p.1733-1742
Hauptverfasser: Rößler, Christiane, Steiniger, Frank, Ludwig, Horst‐Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1742
container_issue 4
container_start_page 1733
container_title Journal of the American Ceramic Society
container_volume 100
creator Rößler, Christiane
Steiniger, Frank
Ludwig, Horst‐Michael
description Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers promising techniques to characterize cement hydrates. In this study, electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopic information are combined in order to compare the structural properties of calcium silicate hydrate (C–S–H) and calcium aluminum silicate hydrate (C–A–S–H) phases. Results are shown for 28 days hydrated C–(A)–S–H of portland cement and cement containing ground granulated blast‐furnace slag (GGFBS). Electron diffraction patterns of single fibrous C–S–H and foil‐like C–A–S–H phases reveal a nanocrystalline structure. Also, it is shown by electron diffraction pattern that the crystal structures of C–S–H and C–A–S–H phases are similar. It is confirmed that the crystal structure of 14 Å tobermorite serves as good base for the structure of C–S–H. The electron diffraction patterns of fibrous C–S–H show streaks which indicate stacking faults, proofing that polymerization of silicate chains in C–S–H is limited. Here, we demonstrate for the first time that the dreierketten silicate chains contained in the C–S–H structure are oriented in parallel to the long axis of C–S–H fibers. This finding should be implemented in modeling of crystal growth of C–S–H.
doi_str_mv 10.1111/jace.14729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904205288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321672497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3759-f66c41778aff060dd07ef7a167a10cd7b1c0283959fab5c3bdcb33962ae9f5193</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOP5sfIKAGxGrSTptmuVQ_GXAhQruQprejBk6bU1mlLryCUTwDedJTGfEhQsDl3AP3z1c7kHogJJTGt7ZVGk4pUPOxAYa0CShERM03UQDQgiLeMbINtrxfhpaKrLhAH3kT8opPQdn39TcNjVuDM6X7193oa6wqstVN_pV2iflweOiw1CBnrswMbPaNV43bYftTE1sPTnBpTWm9w2OJysXqMFNuqD7Fpy3L4Afl--fTnU4CL3PymAPbRlVedj_-XfRw8X5fX4VjW8vr_PRONIxT0Rk0lQPKeeZMoakpCwJB8MVTUMRXfKCasKyWCTCqCLRcVHqIo5FyhQIk1AR76KjtW_rmucF-LmcWa-hqlQNzcJLKsiQkYRlWUAP_6DTZuHqsJ2kWcaJ4CJhgTpeU_0pvAMjWxeO4TpJieyjkX00chVNgOkafrUVdP-Q8maUn69nvgGGuJe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887097952</pqid></control><display><type>article</type><title>Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy</title><source>Wiley Online Library Journals</source><creator>Rößler, Christiane ; Steiniger, Frank ; Ludwig, Horst‐Michael</creator><creatorcontrib>Rößler, Christiane ; Steiniger, Frank ; Ludwig, Horst‐Michael</creatorcontrib><description>Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers promising techniques to characterize cement hydrates. In this study, electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopic information are combined in order to compare the structural properties of calcium silicate hydrate (C–S–H) and calcium aluminum silicate hydrate (C–A–S–H) phases. Results are shown for 28 days hydrated C–(A)–S–H of portland cement and cement containing ground granulated blast‐furnace slag (GGFBS). Electron diffraction patterns of single fibrous C–S–H and foil‐like C–A–S–H phases reveal a nanocrystalline structure. Also, it is shown by electron diffraction pattern that the crystal structures of C–S–H and C–A–S–H phases are similar. It is confirmed that the crystal structure of 14 Å tobermorite serves as good base for the structure of C–S–H. The electron diffraction patterns of fibrous C–S–H show streaks which indicate stacking faults, proofing that polymerization of silicate chains in C–S–H is limited. Here, we demonstrate for the first time that the dreierketten silicate chains contained in the C–S–H structure are oriented in parallel to the long axis of C–S–H fibers. This finding should be implemented in modeling of crystal growth of C–S–H.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14729</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Blast furnace practice ; calcium silicate hydrate ; cement ; Cements ; Ceramics ; Diffraction ; Electron diffraction ; Electron microscopy ; Hydrates ; hydration ; Imaging ; Microscopy ; Microstructure ; Phases ; Slag ; Spectrum analysis</subject><ispartof>Journal of the American Ceramic Society, 2017-04, Vol.100 (4), p.1733-1742</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3759-f66c41778aff060dd07ef7a167a10cd7b1c0283959fab5c3bdcb33962ae9f5193</citedby><cites>FETCH-LOGICAL-c3759-f66c41778aff060dd07ef7a167a10cd7b1c0283959fab5c3bdcb33962ae9f5193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14729$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14729$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Rößler, Christiane</creatorcontrib><creatorcontrib>Steiniger, Frank</creatorcontrib><creatorcontrib>Ludwig, Horst‐Michael</creatorcontrib><title>Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy</title><title>Journal of the American Ceramic Society</title><description>Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers promising techniques to characterize cement hydrates. In this study, electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopic information are combined in order to compare the structural properties of calcium silicate hydrate (C–S–H) and calcium aluminum silicate hydrate (C–A–S–H) phases. Results are shown for 28 days hydrated C–(A)–S–H of portland cement and cement containing ground granulated blast‐furnace slag (GGFBS). Electron diffraction patterns of single fibrous C–S–H and foil‐like C–A–S–H phases reveal a nanocrystalline structure. Also, it is shown by electron diffraction pattern that the crystal structures of C–S–H and C–A–S–H phases are similar. It is confirmed that the crystal structure of 14 Å tobermorite serves as good base for the structure of C–S–H. The electron diffraction patterns of fibrous C–S–H show streaks which indicate stacking faults, proofing that polymerization of silicate chains in C–S–H is limited. Here, we demonstrate for the first time that the dreierketten silicate chains contained in the C–S–H structure are oriented in parallel to the long axis of C–S–H fibers. This finding should be implemented in modeling of crystal growth of C–S–H.</description><subject>Blast furnace practice</subject><subject>calcium silicate hydrate</subject><subject>cement</subject><subject>Cements</subject><subject>Ceramics</subject><subject>Diffraction</subject><subject>Electron diffraction</subject><subject>Electron microscopy</subject><subject>Hydrates</subject><subject>hydration</subject><subject>Imaging</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Phases</subject><subject>Slag</subject><subject>Spectrum analysis</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYMoOP5sfIKAGxGrSTptmuVQ_GXAhQruQprejBk6bU1mlLryCUTwDedJTGfEhQsDl3AP3z1c7kHogJJTGt7ZVGk4pUPOxAYa0CShERM03UQDQgiLeMbINtrxfhpaKrLhAH3kT8opPQdn39TcNjVuDM6X7193oa6wqstVN_pV2iflweOiw1CBnrswMbPaNV43bYftTE1sPTnBpTWm9w2OJysXqMFNuqD7Fpy3L4Afl--fTnU4CL3PymAPbRlVedj_-XfRw8X5fX4VjW8vr_PRONIxT0Rk0lQPKeeZMoakpCwJB8MVTUMRXfKCasKyWCTCqCLRcVHqIo5FyhQIk1AR76KjtW_rmucF-LmcWa-hqlQNzcJLKsiQkYRlWUAP_6DTZuHqsJ2kWcaJ4CJhgTpeU_0pvAMjWxeO4TpJieyjkX00chVNgOkafrUVdP-Q8maUn69nvgGGuJe0</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Rößler, Christiane</creator><creator>Steiniger, Frank</creator><creator>Ludwig, Horst‐Michael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>201704</creationdate><title>Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy</title><author>Rößler, Christiane ; Steiniger, Frank ; Ludwig, Horst‐Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3759-f66c41778aff060dd07ef7a167a10cd7b1c0283959fab5c3bdcb33962ae9f5193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Blast furnace practice</topic><topic>calcium silicate hydrate</topic><topic>cement</topic><topic>Cements</topic><topic>Ceramics</topic><topic>Diffraction</topic><topic>Electron diffraction</topic><topic>Electron microscopy</topic><topic>Hydrates</topic><topic>hydration</topic><topic>Imaging</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Phases</topic><topic>Slag</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rößler, Christiane</creatorcontrib><creatorcontrib>Steiniger, Frank</creatorcontrib><creatorcontrib>Ludwig, Horst‐Michael</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rößler, Christiane</au><au>Steiniger, Frank</au><au>Ludwig, Horst‐Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-04</date><risdate>2017</risdate><volume>100</volume><issue>4</issue><spage>1733</spage><epage>1742</epage><pages>1733-1742</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers promising techniques to characterize cement hydrates. In this study, electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopic information are combined in order to compare the structural properties of calcium silicate hydrate (C–S–H) and calcium aluminum silicate hydrate (C–A–S–H) phases. Results are shown for 28 days hydrated C–(A)–S–H of portland cement and cement containing ground granulated blast‐furnace slag (GGFBS). Electron diffraction patterns of single fibrous C–S–H and foil‐like C–A–S–H phases reveal a nanocrystalline structure. Also, it is shown by electron diffraction pattern that the crystal structures of C–S–H and C–A–S–H phases are similar. It is confirmed that the crystal structure of 14 Å tobermorite serves as good base for the structure of C–S–H. The electron diffraction patterns of fibrous C–S–H show streaks which indicate stacking faults, proofing that polymerization of silicate chains in C–S–H is limited. Here, we demonstrate for the first time that the dreierketten silicate chains contained in the C–S–H structure are oriented in parallel to the long axis of C–S–H fibers. This finding should be implemented in modeling of crystal growth of C–S–H.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14729</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-04, Vol.100 (4), p.1733-1742
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1904205288
source Wiley Online Library Journals
subjects Blast furnace practice
calcium silicate hydrate
cement
Cements
Ceramics
Diffraction
Electron diffraction
Electron microscopy
Hydrates
hydration
Imaging
Microscopy
Microstructure
Phases
Slag
Spectrum analysis
title Characterization of C–S–H and C–A–S–H phases by electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20C%E2%80%93S%E2%80%93H%20and%20C%E2%80%93A%E2%80%93S%E2%80%93H%20phases%20by%20electron%20microscopy%20imaging,%20diffraction,%20and%20energy%20dispersive%20X%E2%80%90ray%20spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=R%C3%B6%C3%9Fler,%20Christiane&rft.date=2017-04&rft.volume=100&rft.issue=4&rft.spage=1733&rft.epage=1742&rft.pages=1733-1742&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14729&rft_dat=%3Cproquest_cross%3E4321672497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887097952&rft_id=info:pmid/&rfr_iscdi=true