Nonequilibrium clumped isotope signals in microbial methane

Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-04, Vol.348 (6233), p.428-431
Hauptverfasser: Wang, David T., Gruen, Danielle S., Lollar, Barbara Sherwood, Hinrichs, Kai-Uwe, Stewart, Lucy C., Holden, James F., Hristov, Alexander N., Pohlman, John W., Morrill, Penny L., Könneke, Martin, Delwiche, Kyle B., Reeves, Eoghan P., Sutcliffe, Chelsea N., Ritter, Daniel J., Seewald, Jeffrey S., McIntosh, Jennifer C., Hemond, Harold F., Kubo, Michael D., Cardace, Dawn, Hoehler, Tori M., Ono, Shuhei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 6233
container_start_page 428
container_title Science (American Association for the Advancement of Science)
container_volume 348
creator Wang, David T.
Gruen, Danielle S.
Lollar, Barbara Sherwood
Hinrichs, Kai-Uwe
Stewart, Lucy C.
Holden, James F.
Hristov, Alexander N.
Pohlman, John W.
Morrill, Penny L.
Könneke, Martin
Delwiche, Kyle B.
Reeves, Eoghan P.
Sutcliffe, Chelsea N.
Ritter, Daniel J.
Seewald, Jeffrey S.
McIntosh, Jennifer C.
Hemond, Harold F.
Kubo, Michael D.
Cardace, Dawn
Hoehler, Tori M.
Ono, Shuhei
description Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.
doi_str_mv 10.1126/science.aaa4326
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904204624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747343</jstor_id><sourcerecordid>24747343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpzExIkVhY0vr9EBOqykOqYIHZchwHXCVxaicD_x5XrRhYmDzc7175HACuEVwghPkyWe966xbGGEowPwEzBBUrFYbkFMwgJLyUULBzcJHSFsI8U2QG7l9D73aTb30V_dQVtp26wdWFT2EMgyuS_-xNmwrfF523MVTetEXnxi_Tu0tw1uSZuzq-c_DxuH5fPZebt6eX1cOmNFSKsayI4ZIKiySxjLKqqa2oG4oq5yTGpsFQqrrmjFJlEXcCMY6xIqRGGFNCJJmDu8PdIYbd5NKoO5-sa9v8hzAljRSkGFKe9b9UoqwVgyLT2z90G6a4D6sRFwwJJKjKanlQOXtK0TV6iL4z8VsjqPe962Pv-th73rg5bGzTGOIvx1RQQXKeHzIhgBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675171749</pqid></control><display><type>article</type><title>Nonequilibrium clumped isotope signals in microbial methane</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</creator><creatorcontrib>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</creatorcontrib><description>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa4326</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Arrays ; Biological activity ; Carbon cycle ; Equilibrium ; Estimates ; Historic sites ; Isotopes ; Kinetics ; Methane ; Molecules ; Signatures</subject><ispartof>Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6233), p.428-431</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</citedby><cites>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24747343$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24747343$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Wang, David T.</creatorcontrib><creatorcontrib>Gruen, Danielle S.</creatorcontrib><creatorcontrib>Lollar, Barbara Sherwood</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Stewart, Lucy C.</creatorcontrib><creatorcontrib>Holden, James F.</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><creatorcontrib>Pohlman, John W.</creatorcontrib><creatorcontrib>Morrill, Penny L.</creatorcontrib><creatorcontrib>Könneke, Martin</creatorcontrib><creatorcontrib>Delwiche, Kyle B.</creatorcontrib><creatorcontrib>Reeves, Eoghan P.</creatorcontrib><creatorcontrib>Sutcliffe, Chelsea N.</creatorcontrib><creatorcontrib>Ritter, Daniel J.</creatorcontrib><creatorcontrib>Seewald, Jeffrey S.</creatorcontrib><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Kubo, Michael D.</creatorcontrib><creatorcontrib>Cardace, Dawn</creatorcontrib><creatorcontrib>Hoehler, Tori M.</creatorcontrib><creatorcontrib>Ono, Shuhei</creatorcontrib><title>Nonequilibrium clumped isotope signals in microbial methane</title><title>Science (American Association for the Advancement of Science)</title><description>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</description><subject>Arrays</subject><subject>Biological activity</subject><subject>Carbon cycle</subject><subject>Equilibrium</subject><subject>Estimates</subject><subject>Historic sites</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Methane</subject><subject>Molecules</subject><subject>Signatures</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgUQpzExIkVhY0vr9EBOqykOqYIHZchwHXCVxaicD_x5XrRhYmDzc7175HACuEVwghPkyWe966xbGGEowPwEzBBUrFYbkFMwgJLyUULBzcJHSFsI8U2QG7l9D73aTb30V_dQVtp26wdWFT2EMgyuS_-xNmwrfF523MVTetEXnxi_Tu0tw1uSZuzq-c_DxuH5fPZebt6eX1cOmNFSKsayI4ZIKiySxjLKqqa2oG4oq5yTGpsFQqrrmjFJlEXcCMY6xIqRGGFNCJJmDu8PdIYbd5NKoO5-sa9v8hzAljRSkGFKe9b9UoqwVgyLT2z90G6a4D6sRFwwJJKjKanlQOXtK0TV6iL4z8VsjqPe962Pv-th73rg5bGzTGOIvx1RQQXKeHzIhgBk</recordid><startdate>20150424</startdate><enddate>20150424</enddate><creator>Wang, David T.</creator><creator>Gruen, Danielle S.</creator><creator>Lollar, Barbara Sherwood</creator><creator>Hinrichs, Kai-Uwe</creator><creator>Stewart, Lucy C.</creator><creator>Holden, James F.</creator><creator>Hristov, Alexander N.</creator><creator>Pohlman, John W.</creator><creator>Morrill, Penny L.</creator><creator>Könneke, Martin</creator><creator>Delwiche, Kyle B.</creator><creator>Reeves, Eoghan P.</creator><creator>Sutcliffe, Chelsea N.</creator><creator>Ritter, Daniel J.</creator><creator>Seewald, Jeffrey S.</creator><creator>McIntosh, Jennifer C.</creator><creator>Hemond, Harold F.</creator><creator>Kubo, Michael D.</creator><creator>Cardace, Dawn</creator><creator>Hoehler, Tori M.</creator><creator>Ono, Shuhei</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150424</creationdate><title>Nonequilibrium clumped isotope signals in microbial methane</title><author>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Biological activity</topic><topic>Carbon cycle</topic><topic>Equilibrium</topic><topic>Estimates</topic><topic>Historic sites</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Methane</topic><topic>Molecules</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, David T.</creatorcontrib><creatorcontrib>Gruen, Danielle S.</creatorcontrib><creatorcontrib>Lollar, Barbara Sherwood</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Stewart, Lucy C.</creatorcontrib><creatorcontrib>Holden, James F.</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><creatorcontrib>Pohlman, John W.</creatorcontrib><creatorcontrib>Morrill, Penny L.</creatorcontrib><creatorcontrib>Könneke, Martin</creatorcontrib><creatorcontrib>Delwiche, Kyle B.</creatorcontrib><creatorcontrib>Reeves, Eoghan P.</creatorcontrib><creatorcontrib>Sutcliffe, Chelsea N.</creatorcontrib><creatorcontrib>Ritter, Daniel J.</creatorcontrib><creatorcontrib>Seewald, Jeffrey S.</creatorcontrib><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Kubo, Michael D.</creatorcontrib><creatorcontrib>Cardace, Dawn</creatorcontrib><creatorcontrib>Hoehler, Tori M.</creatorcontrib><creatorcontrib>Ono, Shuhei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, David T.</au><au>Gruen, Danielle S.</au><au>Lollar, Barbara Sherwood</au><au>Hinrichs, Kai-Uwe</au><au>Stewart, Lucy C.</au><au>Holden, James F.</au><au>Hristov, Alexander N.</au><au>Pohlman, John W.</au><au>Morrill, Penny L.</au><au>Könneke, Martin</au><au>Delwiche, Kyle B.</au><au>Reeves, Eoghan P.</au><au>Sutcliffe, Chelsea N.</au><au>Ritter, Daniel J.</au><au>Seewald, Jeffrey S.</au><au>McIntosh, Jennifer C.</au><au>Hemond, Harold F.</au><au>Kubo, Michael D.</au><au>Cardace, Dawn</au><au>Hoehler, Tori M.</au><au>Ono, Shuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium clumped isotope signals in microbial methane</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-04-24</date><risdate>2015</risdate><volume>348</volume><issue>6233</issue><spage>428</spage><epage>431</epage><pages>428-431</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aaa4326</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6233), p.428-431
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904204624
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Arrays
Biological activity
Carbon cycle
Equilibrium
Estimates
Historic sites
Isotopes
Kinetics
Methane
Molecules
Signatures
title Nonequilibrium clumped isotope signals in microbial methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20clumped%20isotope%20signals%20in%20microbial%20methane&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20David%20T.&rft.date=2015-04-24&rft.volume=348&rft.issue=6233&rft.spage=428&rft.epage=431&rft.pages=428-431&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa4326&rft_dat=%3Cjstor_proqu%3E24747343%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675171749&rft_id=info:pmid/&rft_jstor_id=24747343&rfr_iscdi=true