Nonequilibrium clumped isotope signals in microbial methane
Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) h...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-04, Vol.348 (6233), p.428-431 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 6233 |
container_start_page | 428 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 348 |
creator | Wang, David T. Gruen, Danielle S. Lollar, Barbara Sherwood Hinrichs, Kai-Uwe Stewart, Lucy C. Holden, James F. Hristov, Alexander N. Pohlman, John W. Morrill, Penny L. Könneke, Martin Delwiche, Kyle B. Reeves, Eoghan P. Sutcliffe, Chelsea N. Ritter, Daniel J. Seewald, Jeffrey S. McIntosh, Jennifer C. Hemond, Harold F. Kubo, Michael D. Cardace, Dawn Hoehler, Tori M. Ono, Shuhei |
description | Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. |
doi_str_mv | 10.1126/science.aaa4326 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904204624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747343</jstor_id><sourcerecordid>24747343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpzExIkVhY0vr9EBOqykOqYIHZchwHXCVxaicD_x5XrRhYmDzc7175HACuEVwghPkyWe966xbGGEowPwEzBBUrFYbkFMwgJLyUULBzcJHSFsI8U2QG7l9D73aTb30V_dQVtp26wdWFT2EMgyuS_-xNmwrfF523MVTetEXnxi_Tu0tw1uSZuzq-c_DxuH5fPZebt6eX1cOmNFSKsayI4ZIKiySxjLKqqa2oG4oq5yTGpsFQqrrmjFJlEXcCMY6xIqRGGFNCJJmDu8PdIYbd5NKoO5-sa9v8hzAljRSkGFKe9b9UoqwVgyLT2z90G6a4D6sRFwwJJKjKanlQOXtK0TV6iL4z8VsjqPe962Pv-th73rg5bGzTGOIvx1RQQXKeHzIhgBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675171749</pqid></control><display><type>article</type><title>Nonequilibrium clumped isotope signals in microbial methane</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</creator><creatorcontrib>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</creatorcontrib><description>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa4326</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Arrays ; Biological activity ; Carbon cycle ; Equilibrium ; Estimates ; Historic sites ; Isotopes ; Kinetics ; Methane ; Molecules ; Signatures</subject><ispartof>Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6233), p.428-431</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</citedby><cites>FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24747343$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24747343$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Wang, David T.</creatorcontrib><creatorcontrib>Gruen, Danielle S.</creatorcontrib><creatorcontrib>Lollar, Barbara Sherwood</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Stewart, Lucy C.</creatorcontrib><creatorcontrib>Holden, James F.</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><creatorcontrib>Pohlman, John W.</creatorcontrib><creatorcontrib>Morrill, Penny L.</creatorcontrib><creatorcontrib>Könneke, Martin</creatorcontrib><creatorcontrib>Delwiche, Kyle B.</creatorcontrib><creatorcontrib>Reeves, Eoghan P.</creatorcontrib><creatorcontrib>Sutcliffe, Chelsea N.</creatorcontrib><creatorcontrib>Ritter, Daniel J.</creatorcontrib><creatorcontrib>Seewald, Jeffrey S.</creatorcontrib><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Kubo, Michael D.</creatorcontrib><creatorcontrib>Cardace, Dawn</creatorcontrib><creatorcontrib>Hoehler, Tori M.</creatorcontrib><creatorcontrib>Ono, Shuhei</creatorcontrib><title>Nonequilibrium clumped isotope signals in microbial methane</title><title>Science (American Association for the Advancement of Science)</title><description>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</description><subject>Arrays</subject><subject>Biological activity</subject><subject>Carbon cycle</subject><subject>Equilibrium</subject><subject>Estimates</subject><subject>Historic sites</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Methane</subject><subject>Molecules</subject><subject>Signatures</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgUQpzExIkVhY0vr9EBOqykOqYIHZchwHXCVxaicD_x5XrRhYmDzc7175HACuEVwghPkyWe966xbGGEowPwEzBBUrFYbkFMwgJLyUULBzcJHSFsI8U2QG7l9D73aTb30V_dQVtp26wdWFT2EMgyuS_-xNmwrfF523MVTetEXnxi_Tu0tw1uSZuzq-c_DxuH5fPZebt6eX1cOmNFSKsayI4ZIKiySxjLKqqa2oG4oq5yTGpsFQqrrmjFJlEXcCMY6xIqRGGFNCJJmDu8PdIYbd5NKoO5-sa9v8hzAljRSkGFKe9b9UoqwVgyLT2z90G6a4D6sRFwwJJKjKanlQOXtK0TV6iL4z8VsjqPe962Pv-th73rg5bGzTGOIvx1RQQXKeHzIhgBk</recordid><startdate>20150424</startdate><enddate>20150424</enddate><creator>Wang, David T.</creator><creator>Gruen, Danielle S.</creator><creator>Lollar, Barbara Sherwood</creator><creator>Hinrichs, Kai-Uwe</creator><creator>Stewart, Lucy C.</creator><creator>Holden, James F.</creator><creator>Hristov, Alexander N.</creator><creator>Pohlman, John W.</creator><creator>Morrill, Penny L.</creator><creator>Könneke, Martin</creator><creator>Delwiche, Kyle B.</creator><creator>Reeves, Eoghan P.</creator><creator>Sutcliffe, Chelsea N.</creator><creator>Ritter, Daniel J.</creator><creator>Seewald, Jeffrey S.</creator><creator>McIntosh, Jennifer C.</creator><creator>Hemond, Harold F.</creator><creator>Kubo, Michael D.</creator><creator>Cardace, Dawn</creator><creator>Hoehler, Tori M.</creator><creator>Ono, Shuhei</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150424</creationdate><title>Nonequilibrium clumped isotope signals in microbial methane</title><author>Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Könneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a487t-b3a6847c183c545bfdc7df41bee822af2089dd65449c16e715622933d12243383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Biological activity</topic><topic>Carbon cycle</topic><topic>Equilibrium</topic><topic>Estimates</topic><topic>Historic sites</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Methane</topic><topic>Molecules</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, David T.</creatorcontrib><creatorcontrib>Gruen, Danielle S.</creatorcontrib><creatorcontrib>Lollar, Barbara Sherwood</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Stewart, Lucy C.</creatorcontrib><creatorcontrib>Holden, James F.</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><creatorcontrib>Pohlman, John W.</creatorcontrib><creatorcontrib>Morrill, Penny L.</creatorcontrib><creatorcontrib>Könneke, Martin</creatorcontrib><creatorcontrib>Delwiche, Kyle B.</creatorcontrib><creatorcontrib>Reeves, Eoghan P.</creatorcontrib><creatorcontrib>Sutcliffe, Chelsea N.</creatorcontrib><creatorcontrib>Ritter, Daniel J.</creatorcontrib><creatorcontrib>Seewald, Jeffrey S.</creatorcontrib><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Kubo, Michael D.</creatorcontrib><creatorcontrib>Cardace, Dawn</creatorcontrib><creatorcontrib>Hoehler, Tori M.</creatorcontrib><creatorcontrib>Ono, Shuhei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, David T.</au><au>Gruen, Danielle S.</au><au>Lollar, Barbara Sherwood</au><au>Hinrichs, Kai-Uwe</au><au>Stewart, Lucy C.</au><au>Holden, James F.</au><au>Hristov, Alexander N.</au><au>Pohlman, John W.</au><au>Morrill, Penny L.</au><au>Könneke, Martin</au><au>Delwiche, Kyle B.</au><au>Reeves, Eoghan P.</au><au>Sutcliffe, Chelsea N.</au><au>Ritter, Daniel J.</au><au>Seewald, Jeffrey S.</au><au>McIntosh, Jennifer C.</au><au>Hemond, Harold F.</au><au>Kubo, Michael D.</au><au>Cardace, Dawn</au><au>Hoehler, Tori M.</au><au>Ono, Shuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium clumped isotope signals in microbial methane</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-04-24</date><risdate>2015</risdate><volume>348</volume><issue>6233</issue><spage>428</spage><epage>431</epage><pages>428-431</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aaa4326</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6233), p.428-431 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904204624 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Arrays Biological activity Carbon cycle Equilibrium Estimates Historic sites Isotopes Kinetics Methane Molecules Signatures |
title | Nonequilibrium clumped isotope signals in microbial methane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20clumped%20isotope%20signals%20in%20microbial%20methane&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20David%20T.&rft.date=2015-04-24&rft.volume=348&rft.issue=6233&rft.spage=428&rft.epage=431&rft.pages=428-431&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa4326&rft_dat=%3Cjstor_proqu%3E24747343%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675171749&rft_id=info:pmid/&rft_jstor_id=24747343&rfr_iscdi=true |